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i

Professor Scott P. Stevens is Professor 
of Computer Information Systems and 
Management Science at James Madison 

University (JMU) in Harrisonburg, Virginia. In 
1979, he received B.S. degrees in both Mathematics 
and Physics from The Pennsylvania State University, 

where he was  rst in his graduating class in the College of Science. In 1987, 
Stevens received his Ph.D. in Mathematics from The Pennsylvania State 
University, working under the direction of Torrence Parsons. Parsons himself 
received his Ph.D. under the direction of Albert W. Tucker, the well-known 
game theorist. After Parson’s unexpected death in 1987, Stevens completed 
his doctoral work under George E. Andrews, the world’s leading expert in the 
study of integer partitions. Dr. Stevens’s doctoral thesis was “Group-Action 
Graphs and Ramsey Graph Theory: Investigating the Ramsey Numbers 
R(K1,n, Kk,m) and R(K1,n, Bk,m).”

Professor Stevens’s research interests include combinatorics, game 
theory, graph theory, statistics, and neural networks. In collaboration 
with his JMU colleagues, he has published articles on a wide range of 
topics. These include papers on neural network prediction of survival in 
blunt-trauma-injured patients; the effect of private school competition on 
public schools; standards of ethical computer usage in different countries; 
automatic data collection in business; and optimizing the purchase, 
transportation, and deliverability of natural gas from the Gulf of Mexico. His 
publications have appeared in the European Journal of Operations Research; 
International Journal of Operations & Production Management; Political 
Research Quarterly; Omega: The International Journal of Management 
Science; Neural Computing and Applications; INFORMS Transactions on 
Education; Decision Sciences Journal of Innovative Education; and in a 
number of conference proceedings. Much of his recent research focuses on 
the more effective delivery of mathematical concepts to students.
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Professor Stevens has consulted to a number of  rms, including Corning 
Glass, C&P Telephone, and the Globaltec Corporation. He is a member of the 
American Mathematical Association, the Institute for Operations Research 
and the Management Sciences, and Alpha Kappa Psi Business Fraternity.  

Professor Stevens’s primary professional focus since moving to JMU in 
1984 has been his deep commitment to excellence in teaching. He was the 
1999 recipient of JMU’s Carl Harter Award, the university’s highest teaching 
award. In 2001, he was named Outstanding Graduate Teacher in the JMU 
MBA program and became the  rst professor to be named Outstanding 
Teacher  ve times by the students of the undergraduate business program. 
His teaching interests are wide and include game theory, statistics, operations 
research, physics, calculus, and the history of science. 
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Games People Play: 
Game Theory in Life, Business, and Beyond

Scope: 

1

To many, modern game theory began in 1944 when John von Neumann 
and Oskar Morgenstern published their landmark book, Theory of 
Games and Economic Behavior, putting the ideas of neoclassical 

economics into a more general framework. Earlier economic analysis was 
capable of describing outcomes in a market that was essentially unaffected 
by the action of any one individual. Game theory’s ability to analyze 
situations where individual choice does matter has resulted in a long line of 
game theorists receiving Nobel Prizes in Economics. 

But what is game theory? Simply put, game theory is the study of strategic, 
interactive decision making among rational individuals. Any time people are 
making decisions that affect others or in response to the actions—or even 
the expected actions—of others, they’re playing a game. That’s a broad 
de  nition, and it means that much of our lives are spent sailing on a sea of 
games. On that voyage, game theory can serve as both chart and compass.

At sea, the compass lets the captain set a course and stick to it. Given his 
current position, what direction takes him where he wants to go? In a similar 
way, game theory lets us model many real-life situations in which we  nd 
ourselves. Its analytical tools then help us to gain insight into where to go 
from there. Like a compass, it helps us set our course. At least as important 
as the compass, though, is the chart. 

One purpose of the chart is to identify waters—situations—that are inherently 
dangerous or that must be navigated with great care. Game theory helps us 
to recognize such personal, professional, or political situations. Recognizing 
the character of the game that we’re playing often allows us to play it better. 
Moreover, recognizing a dangerous game may allow us to sidestep it entirely, 
replacing it with one that is more to our liking. 
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These ideas can be applied to an interaction as trivial as where to meet for 
lunch or as earthshaking as whether to risk provoking nuclear war. The tools 
are the same and can be applied with varying degrees of sophistication. This 
course is intended as a  rst exploration of the world of strategic decision 
making. We’ll provide the basic tools of the trade, clearly demonstrate how 
to use them, and then look at some of their applications. And the applications 
are far-reaching. Many of our examples will be in business, especially when 
we discuss merging competitive and cooperative business frameworks—the 
business model of “co-opetition.” That said, we’ll also examine applications 
of game theory to economics, military strategy, politics, and biology. We’ll 
even look at less lofty subjects, such as NASCAR, soccer, traf  c jams, and 
getting your kid to do her homework.

Game theory is a young  eld—less than a century old. In that time, it has 
made remarkable advances, but it’s far from complete. Traditional game 
theory assumes that the players of games are rational—that they act in 
best accordance with their own desires given their knowledge and beliefs. 
This assumption does not always appear to be a reasonable one. In certain 
situations, the predictions of game theory and the observed behavior of real 
people differ dramatically. We will look at why this may be so and discuss 
such ideas as “bounded rationality” that are intended to address this disparity. 
Also, we’ll take a look at some of the exciting work being done in the areas 
of behavioral game theory and evolutionary game theory, two promising new 
branches of the  eld. 

Many of the games studied in this course will be small, owing to the 
limitations of time. The techniques presented, though, can be applied to 
much larger problems, especially when the number-crunching power of 
modern computers can be brought to bear. Occasionally, the results of such 
efforts are remarkable. Political scientist Bruce Bueno de Mesquita has 
used game theory to predict international events for the CIA and others. In 
1984, he predicted that, after the death of Ayatollah Khomeini, Iran’s clerical 
leadership would devolve to the ayatollah Hojatolislam Khamenei and to a 
junior cleric named Akbar Hashemi Rafsanjani. 

The prediction was surprising, to say the least. Khomeini had already 
designated a successor, and it wasn’t Khamenei. And Rafsanjani was such 
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a political nonentity to the West that his name had not yet even appeared in 
The New York Times. Yet, when Khomeini died  ve years later, Khamenei 
and Rafsanjani took up the reins. One must view any particular anecdote 
with skepticism, but CIA analysts claim that Bueno de Mesquita’s success 
rate in predictions is over 90%. 

The world of game theory is extensive and rich, and the mathematics upon 
which most of it is built can be formidable. This course is intended as an 
introduction to that world for the intelligent layperson; thus, I’ll keep the 
mathematical complexity to a minimum. Those with the interest and 
mathematical acumen will  nd more sophisticated treatments of the subject 
to be powerful, far-reaching, and often beautiful  elds of study. This booklet 
includes a supplementary reading list, and I’ve taken care to indicate those 
books that are intended for the more mathematically oriented viewer. 

Although “game theory” is actually strategic decision making, it shares one 
characteristic with the more traditional meaning of “game”: It’s fun. I hope 
that by the time you complete this course, you’ll be able to recognize the 
games you play every day and exclaim with the same zeal as the legendary 
Sherlock Holmes, “The game is afoot!”
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The World of Game Theory
Lecture 1

Any time people are interacting with one another—responding to the 
choices of others or what they think those choices will be—they’re 
playing a game, and that’s what game theory is really about. What’s 
the best way to play the game that we’re in?

We begin our discussion of game theory by playing a game. In this 
game, you begin with $100 and a button that you may push. You 
are playing with 100 other people whose identities are unknown 

to you. Pushing the button has two effects: When you push your button, 
every other player loses $2. Also, if you lose money because other players 
push their buttons, pushing your button will cut those losses in half.

This simple game introduces many basic game theory concepts that we’ll 
examine more closely later: players, strategies, payoffs, rationality, and 
common knowledge. Actual play of this game shows some surprising results. 
For example, across groups of strangers who have no training in game 
theory, percentages of people who push the button vary widely—anywhere 
from 30% to 70%. On average, 50% of people push the button. This means 
each person who did not push the button is now broke, and each who did still 
has $50. This outcome differs from what many people would predict before 
playing the game. Also, if we imagine a version of the game in which pushing 
the button leads to not only monetary gain or loss but also to deployment of 
armed forces or weapons, we see that this game—leading to 30% to 70% of 
players opting to attack—may be an inherently dangerous one.

Game theory is the study of interactive, strategic decision making among 
rational individuals. Games include international con  icts, as well as threats 
and promises in general. Board games, card games, and sports can be 
analyzed with game theory, but such games are not the focus of the  eld. 

Game theory helps us determine how to play the game we’re in or how to 
change it into a game that better suits us. Such lessons are useful even to 
professional decision makers. For example, Max Bazerman, a professor at 
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Harvard Business School, demonstrated the error of failing to think ahead by 
auctioning a $100 bill to Wall Street investors for $465!

Game theory begins with simple examples, using them to develop general 
principles that assist in superior decision making. The predictions of game 
theory give us a baseline for understanding 
the decisions we make in everyday life.

With the 1944 publication of the Theory of 
Games and Economic Behavior, game theory 
came to the attention of the larger world. John 
von Neumann, the father of modern game 
theory, teamed up with economist Oskar 
Morgenstern to write the book. Its goal was 
to put neoclassical economic theory on a  rm 
scienti  c footing.

Government licensing of the radio spectrum 
provides a good example of game theory’s 
utility. Historical approaches to licensing 
include administrative processes; lotteries; 
 rst-come,  rst-served approaches; and auctions. In the United States, game 

theorists created a multi-objective auction structure to replace the failed 
administrative process and lottery approaches. This auction system has been 
a triumph, raising $400 billion for the U.S. treasury in its  rst  ve years and 
ef  ciently distributing licenses.

In this course, we’ll look at applications of game theory to a wide spectrum 
of topics and explore important general ideas, such as strategies, threats, 
promises, brinkmanship, incomplete information, and chance. We’ll consider 
game theory applications to interesting real-world situations, phenomena, 
and processes such as global warming, voting, market-entry and price-setting 
decisions, the evolution of cooperative behavior, and much more. 

A game has three major components: players, strategies, and payoffs. A 
player is a decision maker in a game. A strategy is a speci  cation of a decision 
for each possible situation in which a player may  nd himself or herself. A 

The name “game 
theory” may be an 
unfortunate one. A 
more descriptive 
name would be 
“strategic interaction 
decision making.” 
Game theory sounds 
like child’s play, and 
it’s not.
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payoff is the reward or loss a player experiences when all the players follow 
their respective strategies. 

In the next lecture, we’ll develop these ideas more thoroughly. We will also 
lay the groundwork for the rest of the lecture series. 

Cramton, “Spectrum Auctions.” 

McCain, Game Theory.

1. Consider the button-pushing exercise from the lecture. What conditions 
would have made you change your mind about whether to push the 
button? Here are some possibilities: knowing the other players, talking 
to others before making your decision, making your decision publicly, 
increasing or decreasing the payoffs by a factor of 100, playing the game 
again after the  rst-round results are declared, and not being given the 
$100 to start with.

2. In the button-pushing game, we looked at which lines of reasoning, if 
any, were rational. How would you de  ne rationality? Can two rational 
people make different decisions?

    Suggested Reading

    Questions to Consider
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The Nature of the Game
Lecture 2

Our retail game would have been more realistic if I could have charged 
any amount for my vase, not just $10 or $20. Then, every different 
price I could charge would correspond to a different strategy for me. 
You, on the other hand, would still only have one choice to make—
buy or not—but you’d have to specify which choice to make for every 
single price that I could offer you. So you’d have an in  nite number of 
strategies, too.

To examine the idea of strategy in game theory more thoroughly, we 
begin by revisiting the game in which I can price a product at $10 or 
$20, and you choose whether or not to buy it. In this game, we found 

that I had two strategies, but you had four. My two strategies were to price 
the product at $10 and to price it at $20. You had four strategies because 
you had two situations in which you might  nd yourself and two choices in 
each situation.

Adding complexity to a game can quickly increase the number of possible 
strategies. Even for simple interactions, a player can have an in  nite number 
of strategies; for example, most sellers can set an in  nite number of prices.

Our strategies thus far have been “pure strategies,” which do not involve 
randomness and tell us what to do in every situation. An example relating 
to chess illustrates the concept of a strategy as an instruction book and the 
extent of a pure strategy. In this example, selecting a book from your strategy 
library is effectively selecting a strategy. Because a “pure strategy” book 
speci  es a course of action for all possible situations, it often includes pages 
that will never occur in the game or that never could occur. Pages that are 
never used can still provide deterrents to other strategies for one’s opponent. 
Strategies that are not pure—that depend on an element of chance—are 
called “mixed strategies.”

A player’s payoff represents how much he or she likes the outcome of the 
game. For our purposes, higher payoffs are better than lower payoffs. The 
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payoffs for a particular player (Player A) re  ect what that player cares 
about, not what another player thinks Player A should care about. Payoffs 
must re  ect the actual preferences of the players, not preferences anyone 
else ascribes to them. Game theory can represent such ideas as fairness, but 
only if they are incorporated into the payoffs 
of players who care about them. In general, the 
payoffs for different players cannot be directly 
compared.

For a class of games called “  nite games,” all 
that matters about a player’s payoffs is the order 
in which he or she ranks them, not the size of 
the payoffs themselves. If the payoff scale is only a ranking, the payoffs are 
called “ordinal payoffs.” If the scale measures how much a player prefers 
one option to another, the payoffs are called “cardinal payoffs.” A  nite game 
is a game in which any player gets a  nite number of moves and has only a 
 nite number of choices at each move. Finite games must also have a  nite 

number of players. Finite games require only ordinal payoffs to solve.

In games that aren’t  nite, the units used to measure the payoffs may be 
more complicated. Some players might be risk averse (or risk loving): $1 
million is worth more (or less) to them than a 10% shot at $10 million. This 
valuation is a matter of personal preference, not logic. Game theorists often 
describe payoffs in terms of utility—the general happiness a player gets from 
a given outcome. Payoffs on other scales can be converted to utility payoffs, 
as we see in the example of the lottery ticket.

Common knowledge is our assumption that all players know about the game, 
all players know that all players know about the game, ad in  nitum. The idea 
of common knowledge can seem complicated when we try to formalize it, 
but in general, we can rely on our intuitive understanding of the concept and 
have no problems in working with game theory and its applications. 

Dixit and Skeath, Games of Strategy, 2nd ed.

McCain, Game Theory.

    Suggested Reading

A very useful way 
to imagine a pure 
strategy is as … an 
instruction book. 
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1. In the movie The Princess Bride, Vizzini is offered two goblets of 
wine and must determine which one holds the poison. He begins this 
“battle of wits” by saying, “Now, a clever man would put the poison 
into his own goblet because he would know that only a great fool would 
reach for what he was given. I am not a great fool, so I can clearly 
not choose the wine in front of you. But you must have known I was 
not a great fool—you would have counted on it—so I can clearly not 
choose the wine in front of me.” Relate this reasoning to the idea of 
common knowledge.

2. The de  nition of strategy used in game theory speci  es how a player 
will react in every situation, even situations that will not come to pass 
when the game is actually played. Consider the proposition that what 
you choose to do often depends on the consequences that would result 
if you chose to do something else—in other words, your choice is 
dependent upon events that never occur.

    Questions to Consider
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The Real Life Chessboard—Sequential Games
Lecture 3

As the name suggests, sequential games have events unfolding over 
time. … Most of the encounters you think of as interaction with other 
people are sequential games. 

A “sequential game” is a game in which events unfold over time. In 
sequential games, players have at least some information about the 
earlier actions of other players. Choices made by one player may 

in  uence the choices or options of other players later on. Games in which the 
players make their decisions without any knowledge of what other players 
choose are called “simultaneous games.”

We consider an example based on airplane manufacturing, a dynamic game 
of perfect information. The structure and payoffs of the game are as follows: 
The European company Airbus is deciding whether to enter a market currently 
monopolized by the American manufacturer Boeing. To enter the market, the 
cost to Airbus is $1 billion. Having a monopoly in either the United States or 
Europe is worth $900 million for each competitor. Competing with another 
company in either market earns both competitors $300 million. The European 
Economic Community (EEC) and the United States can both pass protective 
legislation (PL) that excludes the foreign company from competing in their 
domestic markets. Payoffs to the EEC and the United States are equal to the 
pro  ts of their domestic companies plus a $700 million “competition bonus” 
if both companies compete in the domestic markets. This bonus represents 
bene  ts to the markets’ consumers from lower prices. We assume that the 
EEC decides whether to pass PL, then the United States decides, then Airbus 
decides whether to build.

Sequential games are usually represented in “extensive form,” also called 
a “game tree.” A game tree has a node wherever a player makes a decision. 
A node has one branch for each decision the player can make there. At the 
end of any sequence of decision nodes, the game tree gives the outcome as 
a set of payoffs. A powerful tool for solving sequential games is “rollback.” 
To solve the game, we begin at the last move and work backward to the root 
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node. Airbus builds if and only if the EEC passes PL—otherwise, it will lose 
money. Thus, the United States chooses to pass PL to gain a payoff. The EEC 
is now indifferent—the same outcome occurs regardless of whether or not it 
passes PL. Either way, the equilibrium outcome gives Boeing a monopoly in 
both markets.

Some games have a “  rst-mover advantage”: Some or all players do better if 
they move sooner. Let’s look at the same game again, this time with Airbus 
moving before the United States. The United States, which now moves 
last, has a weakly dominant strategy in not passing PL. Because the United 
States won’t retaliate, Airbus should build if the EEC passes PL. The EEC, 
preferring $1,200 million to nothing, should then pass PL. Airbus builds in 
this equilibrium situation.

Let’s solve the game once more, this time with Airbus moving  rst. Because 
the EEC now moves after Airbus, it has no incentive to pass PL. Once 
again, Airbus does not build. As the example 
shows, there is no such thing as a universal 
 rst-mover advantage. The existence of an 

advantage depends on the circumstances of 
the game.

Our rollback procedure generates a solution 
that demonstrates a broader concept: “Nash 
equilibrium.” A collection of strategies, one 
for each player, is called a “strategy pro  le.” 
A strategy pro  le is a Nash equilibrium if no 
player bene  ts by unilaterally changing his 
or her strategy in the pro  le. An important 
re  nement of the Nash equilibrium is 
the “subgame-perfect equilibrium,” which requires the strategy pro  le 
to produce a Nash equilibrium in each of a game’s subgames. Subgame 
perfection guards against equilibria in which players make silly or irrational 
decisions off the equilibrium path. Equilibria that rely on hollow threats are 
not subgame-perfect.

This tree rollback 
approach can be used 
in a lot of different 
games. For it to work, 
they have to be  nite 
and deterministic … 
noncooperative 
and sequential.
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Rollback equilibria are always subgame-perfect. Rollback always shows the 
best way to play any  nite, deterministic game with no chance and no hidden 
information. This result is called “Kuhn’s theorem.” For example, according 
to Kuhn’s theorem, a perfectly played game of chess is a guaranteed win for 
white, a guaranteed win for black, or a guaranteed draw. 

Dixit and Skeath, Games of Strategy, 2nd ed.

Kretschmer, “Game Theory.” 

1. In a haggling situation, is there usually a  rst-mover advantage, a 
second-mover advantage, or neither?

2. A small time crook is being interrogated by a policeman. The crook 
committed a petty crime, but everyone knows that gathering suf  cient 
evidence to prove it will be time consuming for the police. The 
policeman tells the crook that if she doesn’t confess, he’s going to 
spend all of his time making sure that she gets the harshest sentence 
possible. The crook, in light of the threat, confesses. Verify that this 
scenario represents a Nash equilibrium, provided that the policeman 
would actually follow through with his threat. Now verify that the 
subgame-perfect equilibrium is for the crook not to confess and for the 
policeman to go back on his threat; that is, the policeman’s threat is 
actually not credible.

    Suggested Reading

    Questions to Consider
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Life’s Little Games—The 2 × 2 Classic Games
Lecture 4

I want to share with you some games that are, in a sense, atomic. You 
can’t break them down into smaller games. Because of their tininess 
… they appear again and again at the heart of many other games, and 
knowing them gives you a place to start in evaluating such games.

Simultaneous games are games with no turn-taking. Many classic 
simultaneous games are commonly found as building blocks of 
larger games. In simultaneous games, the players don’t have to 

move at the same time; the only restriction is that no players can know 
the other players’ decisions when they make their own. We’ll look at four 
2  2 simultaneous games. A 2  2 game is one with only two players and 
only two moves allowed for each player. The four games we’ll look at 
today are the coordination game, the battle of the sexes, chicken, and the 
prisoner’s dilemma.

Let’s examine the coordination game in the context of dressing up for a 
dinner date. You and Taylor are meeting at your favorite restaurant, L’Amour. 
Each of you has a choice to dress either casually or formally. Above all, you 
prefer matching with Taylor. You would prefer that you both dress formally 
rather than both dressing casually.

We can represent this game (and other simultaneous games) in matrix 
form. In the matrix, each of your strategies gets a row, and each of Taylor’s 
gets a column.

Despite the fact that both players dressing formally seems like the obvious 
answer, several things could disrupt this equilibrium. If you and Taylor don’t 
share all levels of common knowledge, one of you could rationalize dressing 
casually. If you think Taylor is irrational—that Taylor will go against his 
or her own preferences—you might decide to dress casually. This kind of 
situation explains why we almost always assume that players are rational.
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We switch two payoffs in the coordination game and examine a new 
game, the battle of the sexes. Taylor’s preferences are the same as before. 
You, however, prefer to dress casually. Above all, you prefer to match 
with Taylor. You prefer “matching and casual” to “matching and formal.” 
Taylor prefers the reverse. If you could talk to Taylor beforehand, you could 
agree on what to wear and turn the game into a cooperative game, in which 
binding agreements are possible. Any line of reasoning that will lead you to 
choose one style of clothes could be echoed by Taylor to decide on choosing 
the other.

To solve such games as the battle of the sexes, we need a focal point (usually 
called a “Schelling point” in game theory), an answer that seems like the 
obvious choice. An experiment on ABC’s Primetime showed just how good 
people are at identifying Schelling points. Six teams of two were dropped 
off randomly in New York City and were told to meet up with another team 

before the end of the day. All six teams ended 
up at either Times Square or the Empire State 
Building, and almost every team chose noon 
as the meeting time.

We modify the story of Taylor and L’Amour 
to illustrate a game of chicken. You and Taylor 
have broken up, and each of you is dating 
someone new. It’s Valentine’s Day, and you 
are both going out to dinner with your new 
partners. Your preferences are symmetric: 
You’d like to be alone with your new date 
at L’Amour, and if you can’t be there, you’d 
prefer that your ex isn’t either. Your worst 

payoff is that both you and Taylor go to L’Amour, which would make for a 
terrible evening. The “fair” solution to the game—no one goes to L’Amour—
is not a Nash equilibrium. As soon as you know that your ex isn’t going to 
your restaurant, you will want to go there, and vice versa. Once again, we 
need to  nd or create a Schelling point.

We switch two of your payoffs from chicken to arrive at the prisoner’s 
dilemma. You’d rather spend the evening glaring at Taylor than feel exiled 

[The prisoner’s 
dilemma] was 
discovered … at the 
RAND Corporation 
in 1950 … where you 
could see John von 
Neumann and John 
Nash walking down 
the halls. 
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to another restaurant, and Taylor feels the same way. This new matrix is the 
much-vaunted prisoner’s dilemma, a game as maddening as it is important. 
Regardless of what Taylor does, going to L’Amour is better for you than 
not going. You gain an extra unit of payoff either way. Because the game 
is symmetric, Taylor will reason the same way. Thus, everyone goes to 
L’Amour and has a worse time than if both couples had stayed away.

The paradox in the prisoner’s dilemma is that the cooperative outcome is 
better for everyone than only the Nash equilibrium. The equilibrium is not 
“Pareto-optimal” (ef  cient in an economics sense). A solution is Pareto-
optimal if the only way to achieve a better payoff for one player is to give 
a worse payoff to another player. Achieving cooperation in the prisoner’s 
dilemma proves to be a dif  cult and relevant problem. 

Poundstone, Prisoner’s Dilemma. 

Rapoport, Guyer, and Gordon, The 2 × 2 Game.

1. Prisoner’s dilemma situations arise frequently in life. It’s likely that 
you have played such games and in some cases, you found a way to 
cooperate with the other player; in other cases, one of you betrayed the 
other; and in still others, both of you betrayed each another. Consider 
examples of each situation and ask yourself: What made the difference?

2. Try this game with a friend or family member to see how Schelling 
points work. You are identi  ed as the “New York player” and your 
friend or family member is the “California player.” In the game, three 
states may be “claimed”: Florida, Idaho, and Montana. Each of you 
secretly writes down the names of the state that you claim. If each state 
is claimed by exactly one person, then you and your partner win. Before 
revealing your choices, how con  dent do you feel that the two of you 
have won? How con  dent are you that you used the same reasoning in 
arriving at your answer? Try it again with a “harder” set of states.

    Suggested Reading

    Questions to Consider
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Guessing Right—Simultaneous Move Games
Lecture 5

The Allies want to go to Cherbourg; it’s better. So the Germans are 
going to expect an attack there. But the Allies are going to know that 
the Germans are going to expect an attack there, so they’re going to 
choose Normandy. The Germans can realize that, and they’ll—you 
get the idea. Round and round and round until someone gets tired of 
second-guessing.

Simultaneous games are useful for modeling situations in which 
communication can’t or won’t take place among players. This is often 
the case in competitive or zero-sum games. Simultaneous games don’t 

have to be truly simultaneous, as long as players can’t observe one another’s 
moves. One such class of games includes pursuit-evasion games, those in 
which one player wants both players to choose the same option and the 
other wants them to choose different options. Examples of pursuit-evasion 
games include choosing the landing beaches for D-Day and the Battle of the 
Bismarck Sea. 

Let’s analyze the Battle of the Bismarck Sea to explore the concept of 
dominance. The Japanese are trying to ship a convoy of troops from one 
island to another three days away, while the Allies are trying to bomb the 
Japanese  eet. The Japanese have two possible routes, north or south. 
Because weather in the north is expected to be stormy, the Allies will need 
a day to  nd the convoy if it travels north. If the Allied patrol  nds the 
Japanese in the south, it can bomb them the same day. If the Allies are wrong 
the  rst day, they still  nd out which route the Japanese took and can bomb 
the convoy for two days (if the convoy went south) or one day (if the convoy 
went north).

This game is an example of a “zero-sum game,” or a game of perfect 
competition. Whatever advantage one player gains, the other loses. One 
method for solving such a game is von Neumann’s minimax approach, 
in which both players try to minimize potential losses in their worst-case 
scenarios. If Japan sails north, the convoy can’t be bombed for more than 
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two days. If the Allies search north, the convoy won’t be bombed for less 
than two days. Thus, the convoy will be bombed for two days. Sailing north 
“weakly dominates” sailing south. This means that the Japanese always do at 
least as well sailing north as they do sailing south.

Eliminating dominated strategies can prove useful in simplifying larger 
simultaneous games. We can reduce a 4 × 4 game by eliminating dominated 
strategies. To understand how this works, we will consider a scenario in 
which two vendors, Hamlet and McGuf  n, both seek to maximize their 
pro  ts in the breakfast-sandwich business. Charging $2 is strongly dominated 
by charging $3 for McGuf  n. Moreover, charging $3 is strongly dominated 
by charging $4. No matter what price Hamlet sets, charging $3 always earns 
McGuf  n strictly more pro  t than charging $2, and charging $4 earns more 
pro  t than charging $3. If McGuf  n is rational, he will never play these 
dominated strategies. 

Charging $4 also dominates charging $5. Charging $4 is a dominant strategy 
because it dominates all of McGuf  n’s other strategies. A rational player will 
always play a dominant strategy.

Because Hamlet knows that McGuf  n will charge $4, he simply chooses 
his best response to the $4 strategy—in this case, $3. Hamlet’s decision is 
an example of “iterated elimination of dominated strategies” (IEDS). He 
eliminated dominated strategies for one player, then eliminated them for 
himself, whereupon he had only one option left. Any cell in the matrix 
eliminated by IEDS is guaranteed not to be a Nash equilibrium. If IEDS 
leaves only one cell, that cell is a Nash equilibrium.

IEDS can even solve some games that don’t seem to have dominant strategies. 
Such is the case in a game that involves setting transportation prices. In the 
problem of setting prices for tour-boat rides and cable-car rides, no row or 
column in the matrix consistently outperforms the other three; thus, neither 
player has a dominant strategy. IEDS can reduce the game by eliminating 
dominated strategies, even if no dominant strategies exist. For the cable-car 
company, $7 dominates $6 and $8 dominates $9. If the cable-car company 
will always charge $7 or $8, charging $7 is a dominant strategy for the boat 
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company. The cable-car company can then choose its best response to $7, 
which is to charge $8. Both companies make $66 pro  t.

Unfortunately, IEDS cannot solve all simultaneous games, even if it can 
reduce them. To illustrate, we reduce the size of the customer base in the 
previous example.

With four cells left, there are no more strongly dominated strategies. One 
approach is to eliminate weakly dominated strategies, as well. The price 
of $7 for the boat ride weakly dominates $6, and $8 for the cable-car ride 
weakly dominates $7. However, this process can eliminate other viable Nash 
equilibria, even if they’re weakly dominated. 

Another tactic, called the “best-response method,” can  nd all the Nash 
equilibria in a simultaneous game. Mark the best payoff for the row player in 
each column. The highlighted cells represent the best responses to each of the 
column player’s strategies. Then mark the best payoff for the column player 
in each row. These cells represent the best responses for the column player 
to each of the row player’s strategies. Any cell with both payoffs marked is a 
Nash equilibrium. There are no other Nash equilibria in the game. 

The best-response method shows the modi  ed transportation game to have 
three Nash equilibria. The only admissible equilibrium—the only one that 
uses no weakly dominated strategies—is (60, 60); this strategy is the one 
we’d expect to see played. Even though the equilibrium is not Pareto-
optimal, neither player can change strategies to earn more. The equilibrium 
(70, 70) is not a Nash equilibrium because either player could unilaterally 
change strategies and make $72. 

Dixit and Skeath, Games of Strategy, 2nd ed.

Mehlmann, The Game’s Afoot! Game Theory in Myth and Paradox.

    Suggested Reading
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1. You, along with three strangers, see a burglar smash a store window 
and take a piece of jewelry. All of you could identify the perpetrator. As 
you leave the scene, you decide whether to call the police. Assume as 
common knowledge that the bene  t from the criminal being apprehended 
is greater than the cost of becoming involved for each witness. What are 
the Nash equilibria of the game? What dif  culties exist in reaching an 
equilibrium? What would you do if this actually happened?

2. You and a friend are selected as contestants on a game show. You each 
must pick a whole number from 1 to 7. You will pick an odd number, 
and your friend will pick an even number. If the numbers you pick are 
consecutive, such as 5 and 6, then you each win $1,000. If both you and 
your friend understand weakly dominated strategies, you’re guaranteed 
to win the money. How? If you and your friend both understand IEDS 
for weakly dominate strategies, you can win the money every time, even 
if the numbers are selected from 1 to 100, with you choosing odd and 
your friend choosing even. How?

    Questions to Consider
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Practical Applications of Game Theory
Lecture 6

We’re going to see why cigarette companies were happy when they were 
banned from the TV airwaves. We’ll look at a situation where it could 
be in your best interest to let someone blackmail you. We’ll see how a 
bid of $98 can beat a bid of $102 for a stock. We’ll see how insisting that 
you lose ties could be the one thing that lets you win.

The movie A Beautiful Mind shows John Nash thunderstruck by his 
epiphany on how to resolve a dating problem in noncooperative game 
theory. Unfortunately, his solution is not a Nash equilibrium. Game 

theory can explain why tiered bids in corporate buyouts prove to be such a 
powerful tactic. For example, in 1988, Macy’s wanted to buy out Federated 
Stores (which included the popular chain Bloomingdale’s), whose stock was 
selling at $100 per share. Macy’s offered $102 per share to the company’s 
shareholders, conditional on Macy’s obtaining a majority of the stock. 
Players had a weakly dominant strategy of selling to Macy’s—they would 
get $102 per share if Macy’s won its bid but still keep $100 if the takeover 
bid failed.

Robert Campeau, also wanting to buy out Federated Stores, offered a two-
tiered bid of $105 and $90. Campeau would buy up to 50% of the shares in 
Federated Stores for $105 per share, adding his price to a “pot” that would 
eventually be divided evenly among all selling stockholders. After the 
50% mark, he would add only $90 per share to the pot. If Campeau won 
the takeover bid, he could take the company private and appropriate the 
remaining shares for fair-market value, or $90 in this case.

Selling to Campeau strongly dominated selling to Macy’s. If Macy’s 
obtained at least 50% of the shares, Campeau’s offer of $105 was better than 
Macy’s of $102. If Campeau obtained at least 50% of the shares, his offer 
of $97.50 (the price offered after the division of the two-tiered bids) was 
at least better than the $90 that would be paid if the company went private. 
If no one obtained a majority, selling to Campeau for $105 would be better 
than keeping the $100 stock.
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Selling to Campeau was dominant despite its inef  ciency. Shareholders 
could have sold to Macy’s for $102 but instead sold to Campeau for $97.50. 
Campeau created a prisoner’s dilemma for shareholders with his two-tiered 
bid approach.

Voting games often have surprising and counterintuitive results when more 
than two choices are available. One example of such a game involves a three-
person committee, composed of A, B, and C, deciding on who will chair the 
committee for the next year. In this game, each member would like to chair 
the committee. Failing that, A prefers B to C, B prefers C to A, and C prefers 
A to B. As the current chair, A decides how the 
vote will take place, but A graciously decides 
that B will win ties and C will be allowed to 
vote  rst.

We roll back the game tree as usual to  nd the 
equilibrium. A, who votes last, has a weakly 
dominant strategy in voting for himself. (For 
A, voting for himself is called “sincere voting” because he is voting for the 
candidate he likes best.) Voting sincerely is also weakly dominant for B. The 
only way C can avoid B becoming the chair is to cast a second vote for 
A, even though she would prefer to vote for herself. This is an example of 
“strategic voting.” B could try to avoid reelecting A by promising to vote for 
C, but he has no reason to follow through after C has voted. Paradoxically, A 
would not have been elected if he had won ties.

We can also use game theory to explain why, when cigarette companies 
were banned from television advertising in 1971, the industry received an 
unintentional boon. A simpli  cation reveals cigarette advertising to be a 
prisoner’s dilemma. Suppose there are two competing cigarette companies in 
the market, both of which can choose to spend $500 million on advertising. A 
company increases the size of its market by 5% if it advertises and captures 
80% of the market if the other company does not advertise. If both companies 
advertise or if neither does, they split the market evenly. For both companies, 
advertising is a dominant strategy, even though each company makes $1.15 
billion with advertising instead of the $1.5 billion each could make if neither 
advertised. The government removed the “defection” options from the game 

Success in one 
game doesn’t 
always translate to 
success in another.
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by forbidding advertising, leaving the cigarette companies with their Pareto-
optimal payoff.

Game theory can also elucidate the reasons for a surprising fact: One way to 
make a promise credible is to allow another player to retaliate if you break 
the promise—effectively, to encourage blackmail. To see how this works, 
imagine a scenario in which three candidates, Dennis, Rebecca, and Indira, 
are running in a mayoral election. Polls show Dennis with 40% of the vote, 
Rebecca with 45%, and Indira with 15%. Indira likes Rebecca a little more 
than Dennis, but she cares much more about having in  uence over zoning—a 
position Dennis could offer her if he wins with her support. Because Dennis 
has no reason to keep his promise after Indira’s move, he needs to  nd a way 
to make his promise credible. Dennis could give Indira information that could 
cause a scandal if she revealed it while he was in of  ce. Rolling back the 
tree shows that Indira will reveal the scandal only if Dennis refuses her the 
planning position. In equilibrium, Dennis wins and Indira gets the position. 
Allowing himself to be blackmailed actually won Dennis the election! 

Aliprantis and Chakrabarti, Games and Decision Making.

McCain, Game Theory.

1. In the chairmanship vote, who would have won the chairmanship if A 
won ties?

2. Consider the button game from Lecture 1: Each of 101 players has a 
button. Pressing the button has two effects. First, it costs all other 
players $2. Second, if other players have pressed their buttons, it cuts the 
losses you take from them in half. What is the Pareto-optimal solution 
in this game? What are the two Nash equilibria of the game? Suppose 
that before the game is played, the players met in a room and all agreed 
not to push. Pushes are still anonymous. Would you push? Would you 
expect others to? Why or why not?

    Suggested Reading

Questions to Consider
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A Random Walk—Dealing with Chance Events 
Lecture 7

There are really three main ways that unpredictability or chance 
works its way into game theory: as uncertainty about the outcome of 
an event within the game, as an uncertainty about the structure of the 
game itself, or as an uncertainty about the pure strategy that a player 
will choose.

Chance events can affect games in a number of ways. First, they may 
occur within a game. We can think of chance events as “decisions” 
made by nature and add “Nature” as a player in the game. Nature 

makes each move randomly with a certain probability of each option. Also, 
the structure of a game may be uncertain, resulting in a game of incomplete 
information. The United States is playing such a game against North Korea, 
because we do not know their nuclear capabilities (i.e., their strategies). We 
also do not know the payoffs for those strategies. John Harsanyi discovered 
a way to turn games of incomplete information into games of imperfect 
information, in which players know the structure of the game but not 
necessarily where they are within that structure. We will look at Harsanyi’s 
approach, for which he won a Nobel Prize, in a later lecture.

Also, chance can play a role in a player’s choice of which pure strategy 
to play. All two-player games have at least one Nash equilibrium if mixed 
strategies are allowed. Mixed strategies are those in which the pure strategy 
used is randomly selected from the available strategies, with each pure 
strategy having its own probability of selection. With mixed strategies, 
players need not play each pure strategy with equal probability. Any game 
that allows mixed strategies cannot be  nite. This is because a player can 
create an in  nite number of different strategies by varying the probability 
with which he or she plays each pure strategy. Because the game is in  nite, 
cardinal payoffs are needed to solve it, not just ordinal payoffs. Probability 
plays a crucial role in computing payoffs from mixed strategies.

One way to understand probability and how counterintuitive it can be is to 
 nd the answer to the following question: In a group containing you and 40 
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of your friends, what is the probability that two people will share the same 
birth date? Despite the common guess of 41/365 (a 1 in 9 chance, or 11% 
probability), the answer is actually more than 90%.

To  nd the probability of two or more independent events, multiply the two 
probabilities together. According to a recent article in a technology magazine, 
82% of Americans own cell phones. Suppose that you and I each choose an 
American at random. How likely is it that the person you pick has a cell 
phone and the person I pick does not? The odds that your person has a cell 
phone and my person does not are 0.82 × 0.18 = 0.1476 = 14.76%.

Finding the probability of a combination of dependent events (e.g., that 
two people in a group share a birthday) is slightly different. First,  nd the 
probability of the  rst event. Then,  nd the probability of the second event 
given that the  rst event happened, and so on. Finally, multiply these results 
together. In other words, the probability for a combination of dependent 
events is the product of the probability of each individual event.

Returning to the original group with you and 40 of your friends, imagine 
that you line up and mark your birthdays off on a calendar, one after another. 
No two people have the same birth date if and only if each person’s birthday 
is unmarked when his or her turn arrives. The probability of a birthday 
not being marked is the number of open days on the calendar divided by 
the total number of days in a year. This quotient is 365/365 for the  rst 
person, 364/365 for the second, and so on down to 325/365. Multiplying 
the probability for each individual event, we get 1  364/365  363/365  
362/365  …  325/365  0.097, or only about a 9.7% chance of no two 
people having the same birthday.

Let’s now turn to the Monty Hall Paradox and discuss its payoffs in terms of 
expected value. Suppose you are a contestant on the old TV show Let’s Make 
a Deal®, hosted by Monty Hall. Monty shows you three doors. Behind two 
of the doors is trash; behind one of them is a new car. You choose a door, 
and Monty then opens one of the other doors, revealing trash (he can always 
do this). You are then given a chance to switch your choice to the other 
door. Contrary to intuition, switching doors alters your chances of winning, 
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increasing them from one-third to two-thirds. If you initially guess right 
(that is, choose the door concealing the car) but then switch, you lose. This 
happens one time in three. If you initially guess wrong (that is, choose a door 
concealing trash), Monty must open the other trash door. By switching, you 
are guaranteed to pick the winning door. This happens two times in three.

We calculate your payoff in the Monty Hall game using expected value. 
To  nd expected value, multiply each payoff by its chance of occurring and 
sum the results. “Expected” here essentially means “average.” You have 
a two-thirds chance of winning a $30,000 car and a one-third chance of 
receiving a payoff of $0. Your expected value is 2/3 ($30,000) + 1/3 ($0) = 
$60,000/3 = $20,000.

Finally, we look for the optimal responses to some mixed strategies in the 
game between even Stephen and odd Maude and compute expected values 
for each player. In this game, each player can “shoot” one, two, or three 
 ngers. The expected payoffs for each player for a variety of mixed-strategy 

pro  les are as follows: When Maude plays a mixed strategy of shooting 
one 30% of the time, two 60% of the time, and three 10% of the time 
(0.3, 0.6, 0.1), Stephen’s best payoff comes from shooting two as a pure 
strategy. On the other hand, when Stephen plays a mixed strategy of shooting 
one 40% of the time, two 50% of the time, and three 10% of the time (0.4, 
0.5, 0.1), Maude’s best payoff comes from shooting one or three in any 
proportion and not shooting two at all.

If you know the mixed strategy being played by the other player, you should 
examine each of your pure strategies in turn. If you  nd only one best 
expected payoff, you should play that option as a pure strategy, but if two or 
more strategies are tied, the best response is to play any of the tied strategies 
as pure strategies or to play any mix among those tied strategies.

To  nd a mixed-strategy equilibrium, each player’s mix of strategies must 
be a best response against the other’s. In our next lecture, we will discuss 
how von Neumann showed that players can  nd mixed-strategy equilibria in 
their games. 
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Berensen, Krehbiel, and Levine, Basic Business Statistics.

Grinstead and Snell, Introduction to Probability.

1. Probability can be quite a bit trickier than you might think. Suppose you 
have two audio cassettes in your car. One has country music on both 
sides; the other has country on one side and rock on the other. You pick a 
tape at random, pick a random side, and play it. It’s country. How likely 
is it that the other side is country, too? Most people say the probability 
is one-half, but in fact, the other side will be country two-thirds of the 
time. Try the experiment several times to convince yourself!

2. One of the common mistakes with probability involves conditional 
probabilities—how likely one event is given another. Knowing that a 
drug test is 95% reliable means that a user is 95% likely to be identi  ed 
as a user, and a nonuser is 95% likely to be identi  ed as a nonuser. When 
someone tests positive, how likely is it that he or she is a user? Almost 
everyone says 99%, but the actual answer depends on the fraction of the 
population using drugs. If only 1% of the population uses drugs, then a 
person testing positive will be innocent more than  ve times out of six!

    Suggested Reading

    Questions to Consider
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Pure Competition—Constant-Sum Games
Lecture 8

The security values for the two sides weren’t equal, and because of 
this, it triggered the in  nite second-guessing game that we’ve seen so 
often in these lectures. That’s going to happen any time the two sides 
have different security values, and this is where the minimax theorem 
comes in.

According to von Neumann’s revolutionary minimax theorem, two-
player zero-sum games have sensible “optimal” strategies. That 
is, there’s a sensible way to de  ne a best-strategy pro  le, as well 

as a sensible way to  nd it. We revisit the minimax strategies we found in 
discussing the Battle of the Bismarck Sea in Lecture 5. The Japanese could 
sail north and hold the Allies to two days of bombing, while the Allies 
could search north and guarantee at least two days of bombing. When these 
minimax “security values” of the game are identical, neither player can do 
better. To illustrate this, consider that, in the Battle of the Bismarck Sea 
scenario, if the convoy is bombed for more than two days, the Japanese can 
do better by reverting to their minimax strategy. However, if the convoy 
is bombed for less than two days, the Allies can do better by playing their 
minimax strategy. If the other side is playing its minimax, deviating from 
your minimax won’t help you and might hurt you.

On the other hand, suppose the Allies can’t go south again if they initially 
search north. This new game has no equilibria in pure strategies and 
degenerates into second-guessing. This is because the Allies’ minimax 
strategy is now to sail south, which ensures them one day of bombing. If both 
sides play their minimax strategies, the result will not be a Nash equilibrium. 
The Allies can unilaterally change their strategy and get an extra day of 
bombing. However, then the Japanese will then want to change their strategy, 
and the process will continue in an in  nite game of second-guessing. As in 
this example and others in which two players have unequal security values, 
pure minimax strategies do not guarantee an equilibrium; they guarantee an 
equilibrium only when the two players’ security values are equal.
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The minimax theorem says that if players are allowed to use mixed 
strategies, then strategies with the same security values can always be 
found. An examination of penalty kicks in soccer illustrates the concept of 

mixed-strategy equilibrium. We assume 
the goalie is diving left to block kicks with 
probability q and calculate the expected 
payoff for the kicker.

Somewhere between q = 0 and q = 1 is a 
point where kicking left and kicking right 
are equally good. As it turns out, that point is 
q = 0.42. Graphically, the kicker should kick 
left when q < 0.42 and right when q > 0.42. 
The point q = 0.42 is at the bottom of the 
kicker’s “payoff valley,” and it’s the point 
where the kicker scores least often. Because 
we’re dealing with a zero-sum game, the point 
q = 0.42 is the one the goalie likes most, and 

hence, the one we would expect the goalie to play. Similarly, we assume the 
kicker kicks left with probability p and calculate the expected payoff for the 
goalie. The bottom of the goalie’s payoff valley is at the point p = 0.39; thus, 
the kicker should kick left 39% of the time and right 61% of the time.

We graph the kicker’s and goalie’s best responses for all values of p and q. 
The goalie is going to be happy only with a strategy pro  le that corresponds 
to a point on the line representing the kicker’s worst expected payoff. If it 
doesn’t, he’ll unilaterally change his play. The only point at which no one 
bene  ts from unilaterally changing play—the only Nash equilibrium—is 
where the lines cross. At any equilibrium point, each player will be indifferent 
to all the options that he or she is playing.

Although real soccer players of course do not make these calculations or 
generate random numbers to implement their mixed strategy, they play as 
though they were using game theory for strategy selection. They choose 
strategies that correspond to within 1% of what game theory identi  es 
as optimal.

“There could be no 
theory of games 
without that theorem. 
I thought there 
was nothing worth 
publishing until the 
minimax theorem 
was proved.”

—John von Neumann
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We revisit a variant of even Stephen and odd Maude and  nd an easy, nearly 
magical way of computing optimal strategies for 2 × 2 games. In this variant, 
odd Maude and even Stephen each “shoot” either one  nger or two  ngers. 
If the resulting sum is odd, Maude wins $1 per  nger from Stephen. If the 
resulting sum is even, Stephen wins $1 per  nger from Maude.

We take the positive difference of Stephen’s two payoffs in the  rst column 
and write the answer over the second column. We do the same with the 
two payoffs in the second column, writing the answer over the  rst. 
Then wedivide each number by the total of the payoff differences; those 
probabilities correspond to Maude’s optimal strategy. Maude shoots one 
7/12 of the time and two 5/12 of the time. Repeating the tactic for Stephen, 
we  nd that his strategy should also be to shoot one 7/12 of the time and two 
5/12 of the time. 

Dixit and Skeath, Games of Strategy, 2nd ed.

Palacios-Huerta, “Professionals Play Minimax.” 

1. Finding the mixed-equilibrium strategies for zero-sum games can yield 
results that seem perplexing at  rst. In the children’s game Rock-Paper-
Scissors, the optimal mixed strategy is for each player to randomly 
choose each option one-third of the time. But suppose that when rock 
beats scissors, the winning player scores 2 points, not 1. How would you 
expect optimal play to change? Interestingly, the players play rock less, 
not more! Paper is played one-half of the time, and rock and scissors 
both drop to one-fourth. Why? The increased rewards from rock lead the 
other player to defend against it by avoiding scissors and playing paper. 
This additional defense makes the choice of rock less attractive. Verify 
that the strategies speci  ed result in a mixed-strategy equilibrium for the 
modi  ed Rock-Paper-Scissors game. (Each row and each column will 
have an expected payoff of 0.) 

    Suggested Reading

    Question to Consider
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Mixed Strategies and Nonzero-Sum Games
Lecture 9

Humans are very good at watching other humans, and some people are 
very good at anticipating the trains of thoughts of other people’s minds. 
If you’re convinced that you can read your opponent with a fair degree 
of accuracy, then you’re essentially playing an asymmetric game.

We begin by revisiting the ideas presented in Lecture 8 from a 
less mathematical, more intuitive perspective. We will start by 
reexamining the game of even Stephen and odd Maude to  nd 

out what it means to say that a mixed strategy is optimal. In doing so, we 
discover that the optimal strategy for Maude is (0.25, 0.5, 0.25). That is, she 
should choose one 25% of the time, two 50% of the time, and three 25% of 
the time. Surprisingly, these are also the optimal choices for Stephen.

To say that a strategy is optimal doesn’t mean that another strategy can’t 
work better against a foolish opponent. One player could predict his or her 
opponent’s future behavior based on past patterns. Then he or she could 
develop a strategy based on these patterns. For example, one player could 
decide, based on a foolish series of past choices by an opponent, that future 
choices by that opponent would be similar. However, for this strategy to 
outperform the ones we have decided are optimal, the player would need to 
be able to rely on his or her opponent consistently being foolish in the same 
way. He or she also might develop an ineffective strategy because of basing 
it on an opponent who had adopted a deceptively foolish pattern of behavior 
to be abandoned once the  rst player had accepted his or her pattern as 
typical—and developed a strategy based on it. There is not a reliable way 
to outperform an opponent in cleverness without more information than we 
have available. It is in this sense that the strategies that we have discussed 
to this point in the course are optimal. These strategies make one player 
bulletproof relative to his or her opponent’s cleverness.

In relation to our example, saying that (0.25, 0.5, 0.25) is Stephen’s best 
strategy means that he is bulletproof if he plays it. His expected payoff from 
playing this strategy is 0, even if Maude knows that he’s doing it. If Stephen 
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were to play a strategy other than this equilibrium choice, Maude could 
take advantage of the situation by playing one of her pure strategies, giving 
Stephen a lower average payoff. If Maude plays her equilibrium strategy, she 
is bulletproof in the same sense. She will lose $0 on average, regardless of 
what Stephen does.

According to the von Neumann minimax theorem, these bulletproof strategies 
exist for all two-player zero-sum games. The common security value won’t 
necessarily be 0, but if the security value for one player is gaining $1, the 
security value for the other player will be losing $1.

Let’s now turn to a game that involves camping. In this game, two families 
share a campsite, and each has the option to visit it zero, one, or two times 
in a month. Going zero times is a dominated strategy for both families. The 
best-response method gives two Nash equilibria in pure strategies. Each 
family camping once and each family camping twice are both equilibria.

The camping game is actually a version of another classic 2 × 2 game, the 
Stag Hunt. The best payoff for each player is hunting stag together, followed 
by hunting rabbit alone, hunting rabbit together, and hunting stag alone. Stag 
Hunts frequently appear in other guises, including 
the arms race between the United States and the 
Soviet Union and collaboration on team projects 
at work.

Intuitively, we may think that both players should 
cooperate to receive the best payoff, but this 
isn’t always what happens in a Stag Hunt. The 
cooperative equilibrium is better for both players 
than the other equilibrium. In game theory, we say 
that this strategy is “payoff dominant.” However, 
the noncooperative equilibrium is preferable if one player thinks it’s likely 
that the other player won’t choose the cooperative option. Ironically, the 
reason one player might not choose the cooperative equilibrium would be 
that he or she considers it likely that the other player won’t cooperate.

One side tells 
the other the 
obvious truth: 
that they both do 
better by “doing 
the right thing.”
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In the Stag Hunt and other games that share its structure, communication 
is critically important. Through communication, players can arrive at a 
nonbinding commitment to cooperate, which can establish a Schelling 
point. After the Schelling point is established, both players would lose by 
unilaterally changing their strategies.

What is the mixed-strategy equilibrium for the Stag Hunt? Amazingly, the 
same trick of taking the differences of payoffs that we learned in the last 
lecture works for nonzero-sum games. In the mixed-strategy equilibrium, 
both families camp twice 80% of the time and camp once 20% of the time. 
The Smiths get a payoff of 44 and the Joneses get 88.

The idea of mixed-strategy equilibria makes much less sense in 
nonzero-sum games. In zero-sum games, if one player changes away from 
his or her equilibrium strategy, the other player could do better and the  rst 
player might do worse. In nonzero-sum games, both players might be able to 
do better.

If one family goes camping once with probability greater than 20%, the two 
families eventually arrive at the payoff-dominant equilibrium. Suppose the 
Smiths decide to play a 50/50 mixed strategy instead of 20/80. Then, the 
Joneses get more payoffs by going once 100% of the time. But if the Joneses 
always make one trip, then the Smiths will also always go once. This mixed-
strategy equilibrium, like many others, is inherently unstable. If either player 
alters his or her strategy, one of the two pure-strategy equilibria will result. 
Mixed-strategy equilibria in nonzero-sum games often give inef  cient 
payoffs, especially in games that already have pure-strategy equilibria. 

Davis, Game Theory. 

Dixit and Skeath, Games of Strategy, 2nd ed.

    Suggested Reading
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1. One interesting property of mixed-strategy equilibria for 2 × 2 nonzero-
sum games is the following: The probabilities with which a player plays 
each option depend solely on the payoffs to the other player, not the 
player’s own payoffs. As an example, suppose that a motorist must 
decide whether to put money in the parking meter, while the parking lot 
owner must decide whether to patrol the lot for parking violators. An 
increase in the cost of patrolling the lot will not change the fraction of 
the time the lot owner will patrol. It will, however, increase the fraction 
of the time that the motorist will park illegally.

2. Consider the game of two people approaching one another on a 
sidewalk. Each chooses right or left. If they make the same choice, they 
pass one another without a problem and each gets a payoff of 1. If they 
make opposite choices, they both get payoffs of 0. Find the three Nash 
equilibria of the game. (One of them is a mixed equilibrium.) Show that 
the payoff from the mixed equilibrium is only half as good for either 
player as either of the two pure equilibria.

    Questions to Consider
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Threats, Promises, and Commitments 
Lecture 10

Strategic moves aren’t acts of desperation; they’re moves that are added 
to an existing game. When they’re used properly, they can change the 
outcomes of those games dramatically.

Strategic moves come in three forms: threats, promises, and 
commitments. They aren’t acts of desperation—they’re moves that 
are added to an existing game and can change the outcome of a game 

dramatically. Because strategic moves are added on to the beginning of a 
game, they’re often useful in games with a  rst-mover advantage.

A “commitment” is an unconditional statement that a player will make a 
certain decision. Commitments effectively allow a player to make a move 
now instead of at its usual position in the game tree. In previous lectures, 
we’ve seen players take advantage of commitments. In the battle of the 
sexes game, you made a commitment when you left a message on Taylor’s 
answering machine that said you were dressing casually for the date. 

In game theory, “promises” are the equivalent of saying, “If you make this 
choice, I will respond with a choice that you’ll like—something that you 
wouldn’t normally expect me to do.” Unlike commitments, promises are 
conditional: They are triggered only if a particular choice is made.

On the other hand, a “threat” in game theory is the inverse of a promise. 
Where a promise amounts to saying, “Do what I want and I’ll make things 
better for you than you would otherwise expect,” a threat is the equivalent of 
saying, “Do what I want, or I’ll make things worse for you than you would 
otherwise expect.”

Credibility is a critical issue when judging the effectiveness of a strategic 
move. Credibility problems are common in using strategic moves because 
such moves require a player to do something he or she wouldn’t normally 
do. For example, if you promise your child that you’ll go to Disneyland if 
she gets an A in math, she has no incentive to work if she knows the family 
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is planning to go to Disneyland anyway. Threats and promises mean that, 
under certain circumstances, you plan to do something you do not want to do 
when you reach that situation.

A promise you want to follow through on is called an “assurance,” not a 
promise. Similarly, a threat you want to follow through on is a “warning.” 
Assurances and warnings don’t change how people play games. Threats, 
promises, and commitments can, assuming they’re believed.

Promises can help players avoid situations that aren’t Pareto-optimal, as we 
see in a simple game involving you and Taylor going to the movies. You 
and Taylor each have a movie you want to see with the other person. Your 
movie is playing this week and Taylor’s 
is playing next week. The only rollback 
equilibrium is for both of you to stay home. 
You can’t do any better with a commitment 
to go to Taylor’s movie or with a threat not 
to go. You can, however, promise to go to 
Taylor’s movie if you both go to yours.

It is important to remember three important 
points about promises. First, your promise 
allows both you and the other player to get 
a better payoff than you otherwise would 
have. Second, your promise makes you do 
something that you didn’t want to do. After seeing your movie, your best 
payoff comes from going back on the promise and skipping Taylor’s movie 
in the second week. And  nally, none of this works unless your promise 
is heard and believed. Strategic moves must be observable and credible in 
order to work.

Let’s look at a hostage negotiation with terrorists in terms of credible strategic 
moves. We will assume that the terrorists’ priorities are the following: not 
submitting to the will of the United States, having their demands met, and 
not killing the hostages. For the United States, the priorities are having the 
hostages freed and not ceding to terrorist demands. The rollback equilibrium 
is for the terrorists to take hostages, the United States to meet their demands, 

A threat, promise, or 
commitment always 
involves … saying 
… in at least one 
circumstance, you’re 
going to take an action 
that is not in your best 
interest at the time.
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and the terrorists to release the hostages. One possible strategic move for the 
United States is to make a commitment not to negotiate with terrorists under 
any circumstances. Other players must know about a strategic move for it to 
be effective.

As a player, you have two primary approaches for achieving credibility: 
altering your payoffs and restricting your strategies. You could change 
your payoffs so that by the time you have to decide whether to keep your 
commitment, you want to do so. This approach almost always entails 
reducing one of your payoffs. One obvious way to do this is by making a 
contract, preferably with a third-party enforcement mechanism. Without a 
third party, you can’t effectively enforce threats, because a threatened player 
won’t hold you to a contract that would harm his or her interests. 

In the Ultimatum Game that we played in Lecture 2, I could give a third-
party observer $5 and tell that observer that she can keep the money if I 
accept less than $5 from you. If you offer less than $5, my best payoff comes 
from rejecting your offer.

The custom of giving engagement rings has served since the 1930s (albeit to 
a lesser extent in recent years, as the social sanctions against premarital sex 
have weakened) to make the promise of an upcoming wedding a credible 
commitment. Men and women have always engaged in premarital sex, but 
earlier in our history, sleeping with a man outside of marriage could ruin a 
woman’s reputation and endanger her prospects for marriage if her  ancé’s 
commitment was a sham. An expensive engagement ring did, and does, make 
it too costly for a man to simply break his commitment and leave his  ancée. 
In game theory, the ring is a “signal” that establishes a separating equilibrium 
in the marriage game. Men who are serious about the engagement buy the 
ring; men who are faking won’t buy one. 

Dixit and Skeath, Games of Strategy, 2nd ed.

Hild and Laseter, “Reinhard Selten.” 

    Suggested Reading
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1. Consider the sequential market-entry game in which entry (development) 
costs for either  rm are $50 million and the returns are $100 million for 
a lone entrant and $40 million each if both  rms enter. Firm B, which 
moves second, says that it is going to enter the market regardless of what 
A does. Why is this an incredible threat? Show that if Firm B spends 
more than $10 million on development costs before Firm A makes a 
decision, Firm B’s threat is now credible. 

2. An effective threat is cheaper than an effective promise. Why?

    Questions to Consider
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Credibility, Deterrence, and Compellence
Lecture 11

Boeing’s announcement was a strategic commitment. The message 
was: “We’re building this plane, Airbus, whether you do or not. If you 
do, too, we’re all going down the tubes, so stay out.” If the commitment 
was taken seriously, then Airbus should stay out of the market. But was 
Boeing telling the truth?

Credibility often determines the success or failure of a strategic move. 
For example, in 1993 Boeing signaled to Airbus that it was committed 
to building a new generation of planes, the “superjumbos.” At the 

time the market had enough demand for only one superjumbo manufacturer. 
Four years later, Boeing rescinded its commitment, but its strategic—and 
credible—move prevented Airbus from developing the superjumbos and 
competing with Boeing’s midsized planes. In another example from the 
world of the airlines, in 1992 Continental Airlines proposed to raise fares 
on its  ights by 5%, and then within the week rescinded the proposal. 
Essentially, Continental made a promise to its competitors, stating, “We’ll 
raise our fares if you raise yours, and we’ll both be better off.” When not 
enough of Continental’s competitors followed suit, it dropped the plan.

There are other ways to gain credibility by changing payoffs. Most of them 
trade under an idea we’ve seen earlier—an iterated or repeated game. For 
example, in the “Hamlet approach” (often called “rational irrationality”), 
one person convinces another that he or she doesn’t play rationally or 
that he or she doesn’t value the payoff that the  rst person ascribes to 
him or her. This technique can lend credibility to otherwise incredible 
threats or commitments.

A “reputation” for adhering to commitments increases the credibility of a 
strategic move and serves as an incentive in itself to keep commitments. 
Israel’s reputation of not negotiating with terrorists discourages terrorism. 
If Israel were to give in to terrorist demands, it would realize a substantial 
negative payoff for its ruined reputation. Dale Earnhardt’s reputation for 
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cooperation allowed him to arrange “drafting agreements” with other drivers 
in NASCAR races.

Multiple techniques may be combined to establish credibility. For example, 
a government could agree to terrorist demands but double-cross the terrorist 
organization at the last minute. A government that follows this course of 
action will  have ruined its reputation for dealing with terrorists, which may 
discourage terrorists from attacking in the future. This move represents 
rational irrationality. Extending the reputation factor to games with more than 
two players is usually called “teamwork.” The team or community serves 
to change the payoffs of individual members via promises of acceptance or 
threats of censure.

Cutting the game into small slices can chip away at another player’s position 
bit by bit. This approach is often called “salami tactics.” In the Cold War, 
the domino theory of the spread of Communism was one example of salami 
tactics. Salami tactics work well when the only response the other player 
has is a disproportionate one—a “big gun.” One way to  ght back against 
salami tactics is to mix strategies, slowly increasing the probability that the 
big-gun response will be used. President Kennedy used this “brinkmanship” 
approach in the Cuban Missile Crisis.

When dealing with strategic moves,  exibility is a player’s greatest enemy. 
The easiest way to convince other players that your strategic move is credible 
is to arrange the conditions of the game so that when a certain situation arises, 
you must follow through with prescribed actions. We’ve already encountered 
an example of such aggressive constraints: the doomsday device. Doomsday 
devices do occur in real life. For example, in response to a hostile takeover 
bid in 2003, PeopleSoft added a clause to its contracts that promised refunds 
to customers of two to  ve times the licensing fees paid if the company was 
downsized. Oracle eventually acquired PeopleSoft (for a much larger bid 
than it originally intended) because the doomsday device wasn’t a suf  cient 
deterrent. In this case, the doomsday device was also revocable, which 
defeated its purpose. ABC’s Primetime also created a doomsday device to 
encourage volunteers to lose weight. If the contestants didn’t lose 15 pounds 
in two months, ABC would air pictures of them wearing skimpy bathing 
suits on the giant screen of their local sports stadium.
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You can tie your own hands and, thus, increase your credibility with a 
number of less ominous approaches, including appointing an agent, burning 
your bridges, and simply getting the last word. An agent may gain a strategic 
advantage for a player because agents are not usually empowered to radically 
change the deal. It’s also possible to commit—though not to threaten or 
promise—by leaving yourself only one choice. This approach is often 
called burning your bridges and entails a complete loss of control. The most 
extreme example of getting the last word is dying. Courts place a good deal 
of authority in wills because they are quite literally the last word on what the 
deceased desired.

In general, goals of strategic moves fall into one of two categories: 
“deterrence” (maintaining the status quo) and “compellence” (changing 
the status quo). Threats are usually better for deterrence, and promises are 
generally better for compellence. Using a promise for deterrence forces you 
to keep paying over an extended period of time, but threats are essentially 
free. In the Cold War, the United States threatened the Soviets instead of 
making promises and stationed a moderate level of troops in Europe to 
forestall salami tactics. Though the troops could never stop a full-scale 
Soviet attack, if they were attacked, their deaths would create an outcry in 
America and virtually ensure nuclear war. 

Dixit and Skeath, Games of Strategy, 2nd ed.

Fursenko and Naftali, One Hell of a Gamble.

1. How can increasing the magnitude of a threat or promise actually reduce 
its credibility?

2. You want your employee to reduce his or her rate of absenteeism. Would 
you use a threat or promise? What are the advantages and disadvantages 
of each?

    Suggested Reading

    Questions to Consider
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Incomplete and Imperfect Information 
Lecture 12

Maybe your game includes random events, or maybe you’re not exactly 
sure what game it is that you’re playing. This is an unfortunate but 
real possibility. Games have players, strategies, and payoffs, and we 
generally assume that these things are common knowledge. But what 
if they aren’t?

So far in this course, we’ve focused on uncertainty as it applies to mixed 
strategies, but it can affect games in other important ways. Uncertainty 
 gures into games of “incomplete information,” those in which some 

players don’t know the structure of the game. They may be uncertain about 
the possible strategies or payoffs of the other players.

Uncertainty also plays a central role in games of “imperfect information,” 
or those in which some players are unsure about the history of the game. A 
special case of imperfect information is “asymmetric information,” which 
is where one player knows something another player doesn’t. Games of 
symmetric information—in which all players have the same knowledge—
can usually be solved with the expected-value approach.

The Harsanyi transformation can convert a game of incomplete information 
into a game of asymmetric information. A Harsanyi transformation creates a 
spectrum of possible versions (or types) of players in a game. It then assigns 
each type a probability representing the likelihood of that type’s appearance 
in the game. For example, a solvent IBM is more likely than an insolvent 
one. Your optimal strategy is the one that has the best expected value against 
the range of possible opponents.

We will analyze a game of asymmetric information involving used-car sales 
to see how hidden information can drastically affect the outcome of a game. 
In our analysis, we will assume that the used-car lot has two kinds of cars: 
Half are lemons (bad cars) and half are peaches (good cars). As a customer, 
you value a peach at $6,000 and a lemon at $2,000. As the dealer, I value 
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a peach at $4,999 and a lemon at $999. You make an offer, which I either 
accept or decline, similar to how we played the Ultimatum Game.

If both players can tell a lemon from a peach, this game involves chance but 
is still a game of perfect information. Rolling back the tree, you offer $5,000 
for a peach and $1,000 for a lemon and I accept.

If neither of us can tell a lemon from a peach, we simply move the chance 
node to the end of the game tree. We can still  nd a rollback equilibrium: 
You offer $3,000 and I accept.

If only the car dealer can distinguish lemons from peaches, the game is one of 
asymmetric information. The game tree begins with a chance node, but you 
can’t tell if you’re at the lemon node or the peach node. For you, these nodes 
are in the same information set. Given that I’ll never sell you a peach for less 
than $5,000 and your expected payoff from a car is $4,000, you should never 
offer enough to make me sell you a peach. This means you should never 
offer more than I’d accept for a lemon—$1,000. The asymmetric information 
completely eliminates the market for peaches.

The “market for lemons” result has a wide range of applications; it can be 
seen, for example, in a scenario involving health insurance plans. Buying 
health insurance is a game of asymmetric information because people know 
more about their own health than the companies insuring them do.

We can represent the cost of insuring Americans as a probability distribution. 
Imagine a wooden plank with a dollar scale marked on it. For each American, 
I put a grain of sand on the plank at whichever dollar mark corresponds to 
his or her health care cost for the next year.

The expected value of providing health care to an American is the point 
where the plank exactly balances. In this example, this point is at $10,000. 
This amount, $10,000, would be a reasonable amount to pay for insurance 
only if no Americans knew their own health care costs. If people can 
anticipate their health care costs, those who expect lower costs will not buy 
insurance for $10,000. With everyone left of the balancing point opting out 
of health insurance, the average cost to insure anyone who will buy it jumps 
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to $75,000. Repeating this logic, insurance eventually costs so much that no 
one wants to buy it.

“Moral hazard” can arise when a party doesn’t bear the full consequences 
of his or her actions. That player may play less carefully than we would 
expect. People take more risks with insured vehicles if they believe that their 
insurance companies will cover the cost. For the same reason, doctors may 
charge more for medical procedures than individuals might be willing to 
pay if those individuals are insured and doctors and patients alike know that 
their insurers will cover part of the procedure costs. In another example of 
moral hazard, pitchers in the American League throw 15% more beanballs 
than those in the National League because American League pitchers 
don’t bat and, therefore, don’t face retaliation in the batter’s box for hitting 
a batter on the other team. The idea of moral hazard also plays a role in 
higher car insurance rates in Philadelphia compared to those in Pittsburgh. 
Fewer people have auto insurance in Philadelphia, which means that more 
accidents involve uninsured drivers and 
insurance companies have to pay more 
damages if their drivers are involved in 
accidents. When insurers pass these costs 
on to consumers, fewer people can afford 
car insurance, which perpetuates the cycle.

Games of imperfect information can become 
very complicated, very quickly. As a modest 
example, we examine a simpli  ed version 
of poker called Tiny Poker. The rules of the 
game are as follows: At the beginning of the 
game, you put $70 into the kitty and I put in $40. We are each dealt a card 
from the deck. The deck contains two 1 cards and one 2 card. I can bet $70 
or fold. Folding means the other player gets all the money in the kitty. You 
can then bet $30 or fold. If neither player folds, the high card wins. If we tie, 
each player wins half the kitty. How often I should bluff depends on how 
often you think I’m bluf  ng, which in turn, depends on how much I bluff. 
This is the same in  nite loop we found in simultaneous games, and as we 
will see, we can solve the problem by treating the game as simultaneous. 

Every sequential game 
can be expressed as 
a simultaneous game. 
Saying it another way: 
If you can express it in 
a game tree, you can 
express it in a matrix.
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Aliprantis and Chakrabarti, Games and Decision Making.

Dixit and Skeath, Games of Strategy, 2nd ed.

1. In the Tiny Poker game at the end of the lecture, each player has two 
different information sets and four strategies. What are they? Remember, 
an information set is the information you have available to you at the 
time you make your decision, and a strategy must tell you what to do 
given each information set.

2. How does the issue of moral hazard apply to the bailout of private 
corporations by the government?

    Suggested Reading

    Questions to Consider
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Whom Can You Trust?—Signaling and Screening 
Lecture 13

Signaling occurs when I know something and I’m trying to convey what 
I know to you. The  ip side of that is screening. … You’re trying to pick 
my brain. The methodology of both signaling and screening is the same. 
You look at the actions that the player takes and hope that they convey 
something about the information that he or she has.

In games of asymmetric information, a problem often arises. Speci  cally, 
how can one player convey information to another player and be 
believed? The player conveying the information is said to be “signaling,” 

while the player trying to discover the information is “screening.” 

In one real-world case, a company wanted to establish a hazardous waste 
disposal plant near a residential neighborhood, but homeowners feared 
that the site would cause property values to plummet. The waste disposal 
company assured homeowners that the chance of a negative environmental 
impact was insigni  cant. In fact, the company added, it was con  dent that 
the site would bring economic gains to the community and cause property 
values to rise. Homeowners were suspicious because they knew that the 
company would make the same claim if the site would decrease housing 
values. One resident hit upon an interesting way to screen the company: 
An independent real estate  rm would assess the area’s homes, and in 
 ve years, the company would offer to buy out those homeowners who 

wanted to sell their houses for the price of the earlier assessment. When the 
company’s spokesperson emphatically declined the offer, the true type of the 
 rm was signaled.

Let’s now return to the game of Tiny Poker that we looked at in the last 
lecture. As you will recall, to begin the game, I put $40 in the kitty, and you 
put in $70. We are then each dealt one card from a deck that has only three 
cards: two 1s and one 2. If I decide to stay in the game after the deal, I must 
add $70 to the kitty; if you stay in the game after the deal, you add $30 to the 
kitty. Whoever has the 2 gets all the money in the kitty; if neither of us has 
the 2, we split the pot evenly. 
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How often I should bluff depends on how often you think I bluff and vice 
versa. By framing this game of asymmetric information as a simultaneous 
game, we can avoid the in  nite cycle of second-guessing. In Tiny Poker, 
each of us has four pure strategies: always bet, bet only with a 2, bet only 
with a 1, and never bet. Using the “difference of payoffs” trick, we  nd that 
I should bluff 40% of the time with a 1, and you should bluff just over half 
the time, or about 8/15 of the time. On average, this game favors me by 
$2. Game theory can mathematically describe even a quintessentially human 
behavior: bluf  ng.

Tiny Poker has a “semiseparating equilibrium,” which means that you can 
deduce my type (card) some of the time but not all of the time. There are two 
other kinds of equilibria for signaling: “pooling equilibria” and “separating 
equilibria.” In a pooling equilibrium, all types take the same actions. In a 
separating equilibrium, all types take different actions.

Examples of screening and signaling abound in Greek mythology. In the Iliad, 
Odysseus tries to avoid  ghting in the Trojan War by feigning insanity; among 
other questionable activities, he plows his  elds in random corkscrews. To 
determine whether Odysseus is really insane, Palamedes creates a separating 
equilibrium by throwing Odysseus’s infant son, Telemachus, in front of the 
plow. In the situation created by Palamedes, a sane Odysseus will respond 
differently than an insane one. Either type of Odysseus can continue to plow, 
but the costs are different. An insane Odysseus will have a minimal cost; 
he won’t even know what he has done. But for the sane Odysseus, killing 
his son is more costly than going to war. Not surprisingly, Odysseus stops 
plowing and reveals himself to be sane.

An example of signaling in mythology comes to us in a story of the god 
Dionysus, who was kidnapped by pirates and bound to a ship’s mast with 
ropes. Dionysus signals that he is a god by making the ropes untie themselves. 
When the entire crew except for the helmsman ignores this credible signal 
from Dionysus, he turns them into dolphins.

Examples of signaling abound in the natural world. For instance, when 
threatened by a cheetah, gazelles in East Africa sometimes perform a 
maneuver called “stotting” (jumping straight up into the air before running 



47

away). A likely explanation for this behavior is signaling. Stotting serves as 
a credible signal that the gazelle is healthy, and even a cheetah cannot catch 
a healthy gazelle. Cheetahs often stop the chase after a gazelle stotts, and no 
one has ever seen a cheetah catch a stotting gazelle.

The brightly colored markings found in males of some species, such as 
peacocks, may also be examples of signaling. Given that colorful creatures 
are easier for predators to spot, males may signal their strength and good 
genes by surviving even with the disadvantage of distinctive coloring.

Now, let’s turn to a signaling example in business: Suppose you’re running 
a high-quality gardening business for the next two months. Three-quarters 
of the gardeners in the market perform low-quality work and one-quarter 
perform high-quality work. Low-quality service costs $300 per month to 
provide and is worth $200 to the customer. High-quality service costs $500 
per month to provide and is worth $1,200 to the customer. Despite a signaling 
problem akin to the market for lemons, you can  nd pro  table work using an 
introductory offer: You can credibly signal you are a high-quality gardener 
by making an introductory offer of $290 for the  rst month of work. A low-
quality gardener will be  red after one month and will lose $10 with the 
offer, but after you establish your credibility as a high-quality gardener, you 
can charge up to $1,190 for the second month to recoup your costs.

The  lm The Princess Bride also includes a surprising amount of game 
theory, including vignettes that illustrate the topics we have covered in 
this lecture. In the battle-of-wits scene, our hero, Westley, produces a tube 
of poison. He takes two goblets of wine, and with his back turned to his 
opponent, Vizzini, pours the poison into the wine. Westley tells Vizzini 
to choose which goblet he wants; they will then both drink. Clearly, this 
game is one of asymmetric information because only Westley knows where 
the poison is. After trying to screen Westley, Vizzini chooses a glass—
and dies. What Vizzini didn’t know was that Westley had spent the last 
few years building up an immunity to the poison and, thus, was able to put 
the poison into both cups. Vizzini didn’t know he was playing a game of 
incomplete information. In essence, two types of Westley existed, and one of 
them was immune to the poison.
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Later on in the movie, Westley has been temporarily paralyzed, and 
we are unsure whether or not the paralysis has worn off. The evil Prince 
Humperdinck tries to screen Westley before deciding to attack. Westley 
breaks the impasse by standing and resolutely ordering Humperdinck to drop 
his sword. Humperdinck does so and is captured just as Westley collapses. 
Humperdinck thought he was dealing with a separating equilibrium (only an 
unparalyzed Westley would stand) when, in reality, both types of Westley 
(the paralyzed and the unparalyzed) chose to stand. 

McCain, Game Theory.

Spence, “Job Market Signaling.” 

1. Why would one not expect a separating equilibrium in the Westley/
Humperdinck duel game?

2. In light of the material in this lecture, how can the lavish downtown 
of  ce space of an advertising company be justi  ed?

    Suggested Reading

    Questions to Consider
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Encouraging Productivity—Incentive Schemes
Lecture 14

Suppose that the screening and signaling is done and you know the 
kind of person you’re dealing with. They’re still going to do what they 
want to do if they’re rational. They’re going to factor in everything 
that they care about and then choose the option that gives them the 
best overall satisfaction. If you want to get people to do what you want 
them to do, you’re going to have to create an alignment between their 
desires and yours. 

How do you get others to do what you want them to do? This question 
is obviously an important one in business, politics, international 
relations, and day-to-day life. The answer is generally to create an 

alignment between the behavior you desire and the rewards that the other 
player receives. Such systems are generally called “incentive payments” or 
“incentive schemes.”

For this lecture, we’re going to assume that $1 and 1 util are the same 
thing. However, we should remember that this assumption doesn’t always 
hold. For example, Western Electric conducted a famous experiment at its 
facility in Cicero, Illinois, to  nd out if lighting affected worker productivity, 
an experiment that demonstrated that $1 and 1 util are not the same in all 
situations. In this experiment, when the experimenters raised the level of 
lighting in the factory, workers produced more. When the experimenters then 
progressively lowered the lighting until it was below the original level, the 
workers produced still more. Although experimenters initially were surprised 
and confounded by this, they eventually  gured out that, with all lighting 
changes, the workers had incentive to work harder because they believed 
that management was paying attention to their needs.

Incentive schemes present a possible solution for the “principal-agent 
problem”—the question of how an employer makes an employee work as 
hard as possible. If the employer can monitor the employee, the problem 
doesn’t arise. But if the employer pays more for hard work and can’t 
directly observe the employee’s behavior, the employee can shirk his or 
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her responsibilities and earn a better payoff. We’ve seen this problem of 
information asymmetry before. To understand the principal-agent problem 
more thoroughly, consider the following scenario: Your company is bidding 
on a $250,000 contract. Your proposal writer, Nathan, can either work hard or 
work at his normal pace. Nathan’s hard work increases the probability of the 
proposal’s acceptance from 50% to 80%. Nathan will work at his normal pace 
for $30,000 but wants at least $60,000 to work hard. If you could monitor 
Nathan’s behavior, you could induce him 
to work hard by offering him a little over 
$60,000 for working hard and nothing for 
working normally.

If Nathan works on commission, he has 
an incentive to put in the extra work. The 
key is to make Nathan’s pay contingent on 
the variable you can observe: the success 
of the project. In order for a commission 
arrangement to succeed, Nathan has to earn more than $60,000 if the project 
is successful, working hard has to be a better deal than working normally, 
and the company’s best payoff has to come from Nathan working hard. 
Solving the equations for these conditions yields a bonus of about $100,000 
for Nathan and a base salary of $20,000. Although a negative base salary is 
probably unrealistic, some companies do pay their employees entirely from 
commissions. Team-based incentive schemes seem to be more effective than 
incentives tied to overall company performance.

In some cases, the cost of information asymmetry is just too high. If the 
contract is worth only $150,000, it’s better to let Nathan work at his normal 
pace and pay him $30,000.

As another example, suppose you run a company with 10 suppliers, and 
you need at least 8 of them to deliver in order to function. The suppliers 
can either deliver on time, in which case they make $2,000 on the delivery, 
or they can deliver late, in which case they make $5,000 on the delivery. 
Not surprisingly, your suppliers often deliver late. Threatening to  re any 
supplier who delivers late isn’t credible because you can  re, at most, 2 

Linking employee 
pay to observables in 
company success has 
found wide acceptance 
in business. 
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suppliers. That means a supplier’s expected payoff for delivering late is 
(8/10)($5,000) = $4,000.

The solution is to assign each of the suppliers a different number from 1–10. 
Then you can announce, “I’ll stop doing business with the lowest-numbered 
supplier who is late.” Supplier 1 delivers on time because $2,000 is better 
than nothing. Supplier 2 knows that 1 will deliver on time and, facing the 
same situation as Supplier 1, chooses to deliver on time, as well. The same 
reasoning forces all 10 suppliers to deliver on time.

Billionaire Warren Buffett proposed an incentive scheme to enact campaign 
 nance reform. He wanted a bill introduced in Congress that would outlaw 

campaign contributions of more than $5,000 from any individual or 
organization. The second part of the plan involved an eccentric billionaire 
(i.e., Buffett) putting up $1 billion. If the bill failed to pass, the money would 
be donated to whichever party cast the most votes for it. According to Buffett, 
the bill would easily pass because neither party would be willing to give the 
other $1 billion. In lecture it was noted that Buffett’s idea should have also 
included the provision that if the bill failed with the same number of votes 
from each party that together added up to less than the number required for 
passage, the money would go to the minority party in Congress.

Not all incentive schemes are as well conceived as Buffett’s. In the 1994 Shell 
Caribbean Cup, of  cials decided to make the soccer game more exciting by 
counting goals made in overtime as 2 points. At the end of the  rst round, 
Barbados needed to beat Grenada by two goals in order to advance. With 10 
minutes left in the game, Barbados led 2 to 0. In the 83rd minute, Grenada 
 nally scored. The 2-to-1 lead held by Barbados wasn’t enough for that team 

to advance. 

With three minutes left in the game, Barbados intentionally scored on its 
own goal. If the game ended in a tie, Barbados would have a chance to score 
in overtime for a 4-to-2 victory, which would allow the team to advance to 
the next round. After a minute of shock, the Grenada team realized that it 
could advance to the next round by scoring on either goal. The players from 
Grenada drove frantically at both goals, with Barbados playing defense on 
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both ends of the  eld! Barbados managed to hold out until the sudden-death 
overtime and scored the  rst goal to advance to the next round. 

Dixit and Skeath, Games of Strategy, 2nd ed.

McCain, Game Theory.

1. What incentive function do co-payments and deductibles play for 
insurance coverage?

2. How might high overtime pay discourage productivity?

    Suggested Reading

    Questions to Consider
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The Persistence of Memory—Repeated Games
Lecture 15

A relationship with someone involves a history of past interactions and 
an anticipation of more interactions to come in the future. … Many if 
not most games are really just a link in a much larger chain. 

Because humans generally think in terms of repeated interactions, 
many if not most games depend on past and future interactions or 
games. The string of interactions in a repeated game is called the 

“supergame.” The individual one-shot games are called “stage games.” For 
now, we’ll assume that the stage games are all the same. Each iteration of the 
stage game is one round of the supergame.

Strategies for repeated games, like strategies for other games, have to 
tell players what to do in every situation. Repeated games tend to have a 
signi  cant number of strategies, as well as multiple equilibria. “Open-loop” 
strategies don’t depend on history—a player playing an open-loop strategy 
does the same thing regardless of what another player does. A strategy that 
does depend on past moves is “closed-loop.” If two people play a stage game 
with more than one Nash equilibrium, like chicken, then the repeated game 
will also have more than one Nash equilibrium. Usually it will have a lot 
more. For example, a 10-round iterated game of chicken has well over 1,000 
Nash equilibria, and many of them aren’t easy to characterize.

Even a 100-round prisoner’s dilemma, however, has just one subgame-
perfect equilibrium: (defect, defect) in each of the 100 rounds. Suppose each 
player makes a nonbinding commitment to the grim trigger strategy: “I’ll 
cooperate, but if you ever betray me, I’ll defect for the rest of the game.” At 
 rst blush, it makes sense for the players to cooperate until the last round. 

At that point, there is no chance for the other player to retaliate, so defecting 
becomes both players’ dominant strategy. Because both players know that 
the strategy for the last round is mutual defection, the 99th round becomes the 
“real” last round. Of course, if the 99th round is the last round, both players 
will betray based on the same logic we saw for the 100th round. Neither 
player fears defection in the 100th round because both will defect anyway. 



54

Le
ct

ur
e 

15
: T

he
 P

er
si

st
en

ce
 o

f M
em

or
y—

R
ep

ea
te

d 
G

am
es

Working back through all of the rounds, both players defect on every round 
of the game. The only subgame-perfect equilibrium for a prisoner’s dilemma 
of any  xed length is constant defection.

Although this result is depressing, we still have ways to elicit cooperation in 
the prisoner’s dilemma. The problem with the 100-round prisoner’s dilemma 
was that neither player had any reason to 
cooperate in the  nal round. But if players 
don’t know when the last round will be, it’s 
possible for them to cooperate. Suppose 
that after every round, there’s a chance of 
continuing the game that we will signify with 
. In order for the grim trigger strategy to be 

a Nash equilibrium, neither player should be 
able to do any better by defecting. 

More generally, the payoff for the grim trigger 
strategy is 3/(1  ). For betraying each round, 
the payoff is 2 + 2/(1  ). As we calculated, 
the payoffs are equal for  = 1/2. For  > 1/2, cooperation is the only best 
response to the grim trigger strategy. For  < 1/2, defecting is the only 
best response.

It’s also possible to interpret  in terms of what’s called “net present value.” 
Imagine that you could put your payoffs from one round in the bank and 
let them earn interest at a rate of r per round. Then, getting the payoff in 
the next round would not be as good as getting it now because you would 
lose the interest for one round. This model is described by exactly the same 
mathematics that we’ve done in this lecture, replacing  with 1/(1 + r). In 
this model, cooperative equilibrium is possible, provided that the interest 
rates aren’t too high.

Unfortunately, although the cooperative equilibrium exists, both players 
defecting is still an equilibrium. In fact, there’s a subgame-perfect equilibrium 
that guarantees each player any average payoff between 2 and 3 provided 
that  is high enough—and this equilibrium doesn’t even have to give the 
same average payoff to the two players. 

If the duration of the 
game is unknown 
but likely to be 
suf  ciently long, 
rational players may 
adopt strategies 
resulting in sustained 
mutual cooperation.
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Dixit and Skeath, Games of Strategy, 2nd ed.

Mailath and Samuelson, Repeated Games and Reputations.

1. In an iterated prisoner’s dilemma game, one may decide to punish an 
opponent who has defected by responding with defection for a certain 
number of rounds, then reverting to cooperation. This strategy would 
result in the punished player losing, say, $x each round (starting next 
round) for n rounds. Show that the present value of the money lost is 
(   n + 1)x/(1  ). [Hint: Call the present value of these losses T and 
parallel the work above.] 

2. For many people, the idea of adding together an in  nite number of 
positive numbers and getting a  nite result seems perplexing. But 
consider adding the numbers 0.1, 0.01, 0.001, 0.0001, and so on, forever. 
The result is obviously just 0.1111 …, which is the decimal representation 
of 1/9. On the other hand, it’s not enough that the numbers are getting 
smaller at each step. The sum of 1/2 + 1/3 + 1/4 + 1/5 + … becomes 
arbitrarily large as you continue to add terms. The sum diverges. 

    Suggested Reading

    Questions to Consider



56

Le
ct

ur
e 

16
: D

oe
s 

Th
is

 S
tu

ff 
R

ea
lly

 W
or

k?

Does This Stuff Really Work?
Lecture 16

To heck with what people should do if they’re rational decision makers. 
If they don’t actually do what game theory says, then the theory has no 
predictive power. Worse than that, if other players aren’t doing what 
they should do, then my best choice for my real situation is probably 
different than what theory says, too. That is, the model doesn’t have 
prescriptive power either. 

Though game theory has proven remarkably effective in predicting 
outcomes in some situations, it requires a good deal of information 
in order to do so. As a  eld that aspires to be the theory of strategic 

interaction among rational decision makers, game theory relies on several 
conditions: the game must be modeled correctly, the payoffs must be accurate, 
players must play rationally, and the structure of the game must be common 
knowledge. If one player doesn’t play a game rationally, game theory’s 
prescriptions for other players probably aren’t their optimal strategies.

In the Ultimatum Game, the game-theoretic equilibrium—the proposer 
offers a penny and the responder takes it—almost never happens in real life. 
Proposers tend to offer around 40% of the pot, and responders frequently 
reject offers of less than 20% to 30%. 

Researchers in game theory have ruled out a number of possible explanations 
for these results. Responders have no reason to “teach the proposer a 
lesson,” because the two won’t have an opportunity to play again. You might 
think that responders would reject low offers because the amount of money 
involved is so small, but increasing the size of the pot has almost no effect 
on the results.

The proposer might propose a high offer out of fear of rejection. The simpler 
dictator game was devised to test this hypothesis. In the dictator game, the 
dictator simply chooses how much to give the other player and keeps the 
rest. That’s the end of the game. Only about 20% of the players keep all the 
money, even though that strategy is obviously the only equilibrium.
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Although most people share the wealth out of a sense of fairness, “fairness” 
is shorthand for a remarkably complicated payoff modi  er. Additional 
factors, such as maintaining anonymity or casting the dictator as the seller 
of an item, had a marked effect on offers in the dictator game. With six such 
factors in place, nearly two-thirds of dictators kept all the money. In general, 
the larger the social distance between the players, the smaller the donations.

Variations on the Ultimatum Game have been played in experimental contexts 
to try to uncover why what players do in these games con  icts with game 
theory. Experimental evidence from these games shows that the appearance 
of fairness seems to be more important to players than equal payoff.

Behavioral game theory seeks explanations consistent with game theory for 
why humans often don’t play equilibria. It is unlikely for an equilibrium to 
appear out of thin air, but John Nash and others have noted that people often 
move closer to game-theoretic predictions over time.

Neuroscience shows that during the Ultimatum Game, a part of the brain 
called the “insula” activates whenever the responder receives a low offer. The 
insula is responsible for generating emotionally relevant context for sensory 
experience. With the Ultimatum Game, the greater the number of cells in the 
insula  ring, the quicker the rejection of the proposer’s offer. In other words, 
the rejection of the offer is visceral, not logical. Experimenters have also 
found circumstances in which responders will accept lopsided divisions that 
seem to be out of the proposer’s control.

Experiments with highly social capuchin monkeys prove that the idea of 
fairness extends beyond humans. In these experiments, researchers trained 
monkeys to trade a rock for a food reward. Later, when researchers gave 
more enticing food rewards to some monkeys or rewarded some monkeys 
who had not earned the rewards, other monkeys refused to play with the 
human researchers, often even throwing food at them.

Cooperative solutions to the prisoner’s dilemma can develop from kinship or 
from “reciprocal altruism”—the idea that one good turn deserves (and will 
get) another. The system of reciprocal altruism will break down, however, 
unless it incorporates some punishment for cheaters.
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Evidence from the Ultimatum Game suggests that people are willing to pay 
the cost of punishment even under rather remarkable circumstances. To move 
toward a better understanding of this point, we will revisit the prisoner’s 
dilemma. What happens if we add a punishing player to the prisoner’s 
dilemma? An arbiter (punisher) whose payoff is the sum of the players’ 
payoffs will never punish anyone and, thus, will have no effect. An arbiter 
whose payoff is the sum of the cooperating 
players’ payoffs has no reason to punish or 
not to punish. Only an arbiter who receives 
a positive payoff from punishing defectors 
can achieve reliable cooperation.

Not all work in behavioral game theory 
deals with changing payoffs. Another 
research direction addresses “bounded 
rationality”—the idea of limits on human 
rationality. The easiest way to explain this concept is with a game. In a 
group of 100 people, each person picks a number between 0 and 100. The 
goal is to pick the closest number to 70% of the average of all the numbers 
chosen. The only Nash equilibrium for this game is for everyone to pick 0. 
In studies, the median guess is around 35 and the winning guess is generally 
around 25.

The kind of behavior exhibited in this experiment is called bounded 
rationality, a term that describes the limit of how far normal people will carry 
out a chain of reasoning before terminating it. Generally, people carry chains 
of reasoning further with repeated play, especially when the previous rounds 
are common knowledge.

When Robert Axelrod set up an iterated prisoner’s dilemma competition, 
the winning strategy was a surprisingly simple program called tit for tat. 
With this strategy, one player cooperated on the  rst round and, after that, 
did whatever the other player had done in the previous round. In a second 
competition, more than twice as many programs were submitted, including 
a few programs designed speci  cally to beat tit for tat, but the tit-for-tat 
strategy won again.

Advantages are 
conferred on society 
by such incentives 
as “fairness” and 
“altruistic punishment.”
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Axelrod believes that tit for tat works because it elicits cooperation from 
other players. Tit for tat has four main qualities that make it successful: First, 
the strategy is nice because the player using it is never the  rst to betray. 
Second, it’s able to be provoked in that it quickly and reliably punishes 
the other player’s betrayals. Third, it’s forgiving because it can easily 
return to cooperation even after a defection. Lastly, it’s straightforward 
because it’s simple enough that other players can see that cooperating is 
the best choice.  

Axelrod, The Evolution of Cooperation.

Bueno de Mesquita, Predicting Politics.

Green and Armstrong, “The War in Iraq: Should We Have Expected Better 
Forecasts?”

Thaler, The Winner’s Curse.

1. You are player 2 in the Ultimatum Game. Player 1 has offered you $10. 
Does it make a difference to you if player 1 is dividing $12, $20, or 
$100? Why? Does it make a difference to you if player 1 is offering his 
own money, dividing money that he won in a previous game, or dividing 
money given to him for division? Why? Does it make a difference if 
player 1 is an individual, an organization, or a computer? Why?

2. Two lanes of traf  c are narrowing to one because of an accident on 
the road ahead. The drivers of 10 cars have ignored your turn signal 
and refused to allow you to merge into the single lane. Finally, you get 
in the single lane. Does this history change your decision on letting 
other drivers into the single lane? Why? In which direction? Is your 
behavior rational?

    Suggested Reading

    Questions to Consider
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The Tragedy of the Commons
Lecture 17

Repeated exposure to the same situation lets us try different strategies 
and see how they work. If everyone is doing this, we often slide toward 
the game-theoretic equilibrium. 

Collective-action games are those with more than two players. If 
binding agreements are allowed, games with more than two players 
can become very dif  cult to analyze. In this lecture, we will focus on 

noncooperative games. Because these games can grow very large, often with 
millions of possible outcomes, we simplify them by assuming a community 
of players who share the same strategies and payoffs.

A “free rider” is a person who bene  ts from someone else’s work without 
paying any cost. Essentially, a free rider is shirking responsibility in a 
many-player social dilemma. A social dilemma is any game in which the 
equilibrium isn’t Pareto-optimal. Although all the social dilemmas in this 
lecture have only two strategies for each player, this limited model can 
describe many different situations. We will call the two strategies “working” 
and “shirking.” Despite the negative connotation of “shirking,” we will see 
that it may sometimes be a good idea to let some members of society shirk.

We will begin by looking at air pollution as a social dilemma; players 
can work to curb emissions or shirk by producing emissions as they 
normally do. Payoffs depend on the fraction of the population that is 
working (p). Air pollution is a multi-person version of a prisoner’s dilemma, 
and it presents to us a situation known as the “Tragedy of the Commons.” In 
this situation, many people acting in their own self-interest may, over time, 
destroy a shared resource. Such “tragedies” occur every day, from over  shing 
to traf  c congestion. The button-pushing game from the  rst lecture involved 
a Tragedy of the Commons. In social dilemmas, we measure social good as 
the sum of payoffs to all players. In a Tragedy of the Commons, “everybody 
works” does not always maximize social good. This is because, if the bene  ts 
from shirking are great enough, having some people shirk can maximize 
social good. However, determining which members of society should shirk 
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is often a dif  cult problem. If shirkers can transfer some of their payoffs to 
workers, then everyone will receive the average payoff. In effect, shirkers 
pay for the inconvenience they cause.

Social dilemmas include more situations than just the Tragedy of the 
Commons. Joining a Neighborhood Watch program is one such case; 
deciding whether to use the metric system is another. 

In a Neighborhood Watch program, becoming a watcher helps to keep your 
house safe; with 40% of the neighbors watching, both shirkers and workers 
get a payoff of 4.8. Although 40% watching is better than everyone shirking, 
it still creates a social dilemma because it doesn’t maximize social good. 
Social good is maximized with about 80% of the neighbors watching; 
the watchers get a payoff of 5.6 and the shirkers get a payoff of 9.6. The 
watchers do much worse than the shirkers, 
but they are still making more than they 
would get at the 4.8 equilibrium. The 
Neighborhood Watch program corresponds 
to a multiplayer game of chicken known 
as the “volunteer’s dilemma.”

Let’s look at another version of this game 
that involves the question of why America 
has not switched to the metric system. 
This game has three equilibria. From most 
social good to least, they are: everyone 
shirks (switches to the metric system), 
everyone works (retains the system of customary units), and 63% work. The 
mixed equilibrium isn’t stable and is likely to start shifting to one of the 
other two equilibria. This game is a multiplayer coordination game.

Kitty Genovese’s horrible murder in 1964 is a tragic example of a volunteer’s 
dilemma. Genovese was murdered in a half-hour attack witnessed by at least 
a dozen of her neighbors. Not one of them called the police. Startlingly, the 
more people eligible to “volunteer”—in this case, call the police—the less 
likely the event is to be reported by anyone. 

What happens when 
you take the simplest 
of games … and move 
them to their many-
player equivalents? … 
These questions have 
remarkable relevance to 
real-world situations. 
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Dixit and Skeath, Games of Strategy, 2nd ed.

Olson, The Logic of Collective Action.

1. Draw a picture similar to those used in this lecture, but have the payoff 
functions w(p) and s(p) cross at least two times by making them curves. 
Analyze the behavior of the resulting society, given that the population 
originally starts at various points along the horizontal axis.

2. The terms “worker” and “shirker” carry strong connotations, but our 
analysis doesn’t depend on them. In any of our graphs, the role of 
“worker” and “shirker” could be reversed by re  ecting the graph about 
a vertical axis (essentially “  ipping the page” by exchanging left and 
right) and reversing the colors of the two lines. 

    Suggested Reading

    Questions to Consider
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Games in Motion—Evolutionary Game Theory 
Lecture 18

This version of game theory rests on a different foundation than the one 
that we’ve developed so far. … And in spite of this, we’re going to see 
that many of the results that we’ve seen already are results that can be 
paralleled in the  eld of evolutionary game theory.

In previous lectures, we’ve seen that people often need time to gravitate 
toward an equilibrium. Evolutionary game theory applies this idea to a 
species. In this lecture, we’ll apply game theory to outcomes among different 

members of the same species. The behavior patterns of a given individual are 
called its “phenotype.” A phenotype corresponds to an individual’s strategy in 
traditional game theory, but it is different in that the phenotype is hardwired; 
an individual can’t change its phenotype any more than you can change your 
height. In our examples, the phenotypes are as follows: A “hawk” may  ght 
for a prize while a “dove” will not. Individuals never change their phenotype, 
and successful phenotypes propagate through time. 

Populations with only one phenotype are called “monomorphic,” from 
the Greek for “one form.” Populations with two or more phenotypes are 
“polymorphic”—“many forms.” It is possible for a single phenotype 
to adopt a mixed strategy, such as behaving like a hawk 40% of the time 
and like a dove 60% of the time. “Monomorphic” isn’t synonymous with 
“pure strategy.”

A “  tness” function measures how well each phenotype does in interacting 
with the population as a whole. The  tness function is essentially the expected 
payoff from an interaction for this phenotype. In a species with 10% hawks 
and 90% doves, hawks have greater  tness because  ghts are rare. Hawks 
win the prize 95% of the time and lose only 5% of the time. Doves win only 
45% of the time and have to put on a show to scare off other doves. When one 
phenotype has greater  tness than another, its proportion increases in the next 
generation. Evolutionary game theory asks what will eventually happen to a 
species given a set of phenotypes. We can ask this question in two ways. One 
way is as follows: If we start with a mix of phenotypes and let the population 
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evolve, what will be the long-term distribution of phenotypes? The second 
way to ask the question is this: If we start with a distribution of phenotypes 

that’s stable over time, can a small number 
of a different phenotype successfully invade 
this population?

Let’s look at an iterated prisoner’s dilemma 
from an evolutionary perspective. When 
the opponents in this game meet, they can 
cooperate or one player can betray the 
other. The population in this game has two 
phenotypes: Grims play the grim trigger 
strategy, and scrooges always betray. For 
now, we’ll also assume that any two players 

play the game only once and then  nd new partners. To work through this 
game, we will let p be the proportion of scrooges in the population. The 
scrooge payoff of 3  2p is always greater than the grim payoff, 2  2p. We 
would expect to see scrooges eventually take over the population. Moreover, 
because scrooges do better against other scrooges than grims do, a few grims 
can’t invade a scrooge population. 

For evolutionary biologists, a population that can’t be invaded by another 
phenotype is said to exhibit an “evolutionarily stable strategy,” or ESS. An 
all-scrooge population is a monomorphic ESS. An all-grim population is not, 
because scrooges can invade grims.

If the game is played twice, grims can retaliate in the second round. The 
scrooge payoff of 4  2p is still always greater than the grims’ 4  3p if there 
are any scrooges in the population at all. An all-scrooge population is once 
again an ESS, because it can resist invasion from the grims.

What happens if we extend the game to three days? The scrooge payoff is 
now 5  2p, and the grims’ is 6  4p. If we set the two  tness functions equal 
to each other, we  nd that they’re the same when p = 1/2. When the number 
of scrooges and grims is the same, they both have a  tness function of 4. In 
this evolutionary game, whichever population has the majority at the outset 
ends up with greater  tness. Also, both monomorphic populations are ESSs.

Like the rest of game 
theory, evolutionary 
game theory gets 
quite deep. The 
mathematics behind 
it can get rather 
sophisticated. 
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Some games, including, our hawk/dove example, have polymorphic ESSs. 
We can  nd ESSs in much the same way that we found equilibria in other 
games. In a game with hawks and doves competing for a prize, neither 
monomorphic strategy is an ESS because hawks do better against doves and 
doves do better against hawks.

The ESSs we found in our scrooge-versus-grim games are exactly the same 
as the admissible, stable Nash equilibria for the games in standard game 
theory. We can even  nd the stable mixed Nash equilibrium in the hawk/
dove game at p = 0.7. The hawk/dove game has two other Nash equilibria: 
One player plays hawk every time and the other plays dove every time. These 
strategies can’t be ESSs because the population can’t be all hawk and all 
dove at the same time. This correspondence is really remarkable, because we 
never required the players to be rational or even to know the payoff matrix.

We can draw members from different species, as well, to handle such games 
as the battle of the sexes. We can also handle as many different phenotypes as 
we want. When we introduce a new phenotype, it’s possible that some other 
phenotypes may no longer be ESSs. In the three-day prisoner’s dilemma, 
imagine a third phenotype, the sneak, which plays like a grim except that it 
always betrays on round three. Grims are no longer an ESS because sneaks 
can invade them.

In a war of attrition, in which all players pay the same increasing cost until 
all but one gives up, it’s easy to end up paying more than the value of the 
prize. Imagine an auction for a $100 bill. A “price clock” starts at $0 and 
steadily increases. Each player has a buzzer. Pressing the buzzer stops the 
clock and means you lose the auction. Both players pay the price on the 
clock, but only the winner gets the $100 bill.

There’s no monomorphic ESS for the War of Attrition, but there is a 
polymorphic one. Each time the clock clicks another dollar, give yourself 
about 1 chance in 100 of buzzing in. The actual chance should be 0.995%. 
This polymorphic strategy outperforms any monomorphic strategy—any 
 xed stopping point—by at least $19. 
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Dixit and Skeath, Games of Strategy, 2nd ed. 

Gintis, Game Theory Evolving. 

1. We saw in our hawk/dove game that a polymorphic ESS exists with 
a population of 70% hawks and 30% doves. But we could consider a 
mutant phenotype in this game that acts as a hawk 70% of the time and 
a dove 30% of the time. Show that this phenotype is a monomorphic 
ESS—it cannot be successfully invaded by either hawks or doves.

2. Games played between two different species (necessary for games that 
aren’t symmetric) require a more complicated graphical representation 
than what we’ve seen in this lecture. If each of the species has only two 
phenotypes, then the situation can be represented within a unit square, in 
which the x-axis records the fraction of species 1 of its  rst phenotype, 
and the y-axis records the fraction of species 2 of its  rst phenotype. 
The dynamic evolution from any original state now corresponds to a 
trajectory through the square, like a ball rolling across a hilly tabletop. 
Locations where the ball would stop and not be dislodged by a slight 
breeze are ESSs. 

    Suggested Reading

    Questions to Consider
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Game Theory and Economics—Oligopolies 
Lecture 19

In 2002, the FTC  led charges against two pharmaceutical companies, 
Andrx in Florida and Hoechst in Germany. Hoechst allegedly paid Andrx 
$40 million a year not to market the generic equivalent to Hoechst’s 
Cardizem CD. … The two  rms evidently created a bottleneck that 
made it impossible for any other  rm to enter the market. 

In this lecture, we look at how game theory is used in economics. Our 
topic is a classic one from microeconomic theory: What is the optimal 
production level for a monopolist, and how does the situation change 

when one or more competitors enter the market? We begin with monopolies, 
which we will later compare to games involving oligopolies (markets that 
have only a small number of competitors). In both situations, the seller’s 
goal is to maximize pro  t. 

A monopolist, like other producers, faces a demand curve. Each point on the 
demand curve tells what quantity of the good is demanded at a certain price. 
In almost all situations, a demand curve is downward sloping: the higher the 
price, the lower the quantity demanded.

Maximizing revenue is equivalent to maximizing the area of the rectangle 
formed by the origin and a point on the demand curve. Maximizing pro  t, 
the monopolist’s true goal, is equivalent to maximizing the rectangle 
with its upper-right corner on the demand curve and its base on the 
variable-cost curve.

We will look at an example of a monopoly, in which the monopolist 
produces chairs. The monopolist faces a demand curve of p = 700  2q. In 
this equation, p represents selling price and q represents quantity to be sold. 
Given a production cost of $100 per chair, a demand curve can determine 
total pro  t for any value of q. In our case, the monopolist should produce 
150 chairs to maximize his or her pro  t.
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In a “von Stackelberg duopoly,” one  rm chooses its production level, then 
the other  rm chooses its production level based on this information. Such 
duopolies offer a signi  cant  rst-mover advantage. The demand function 
changes to p = 700  (q1 + q2) because two companies are now producing 
output. Finding the pro  t levels in a von Stackelberg duopoly is like solving 
a sequential game of perfect information. To look forward, you must reason 
backward. Player 2’s optimal response to player 1’s production of q1—her 
best response function—is to produce q2 = 150  q1/2. Player 1 knows this 
response function and can substitute it for q2 
when calculating optimal q1. Solving for player 
1’s pro  t ( ), we  nd 1 = 300q1  q1/2. Note 
that the leading  rm can calculate the follower’s 
response function ahead of time.

Taking the derivative yields a maximum pro  t 
at q = 150 chairs—the same as the monopoly 
quantity! If demand curves are linear and 
variable costs are constant, including a follower 
 rm doesn’t change the leading  rm’s quantity 

and cuts its pro  ts precisely in half. The following  rm makes half of the 
leader’s quantity and earns half its pro  ts—one-quarter of the original 
monopolist’s pro  ts. The other quarter of the monopolist’s pro  ts stays in 
the hands of consumers.

“Cournot duopolies” are markets cast as simultaneous games. Because our 
 rms are identical and we move simultaneously, our response functions are 

symmetric. My response function is q2 = 150  q1/2, and yours is q1 = 150 
 q2/2. Solving these equations simultaneously gives q1 and q2 = 100. Each 

 rm earns $20,000 in pro  t.

A monopolist making $45,000 could be tempted to pay a prospective entrant 
to the marketplace somewhere between $20,000 and $25,000 to refrain from 
entering. Both  rms earn more this way than with the Cournot duopoly’s 
$20,000. Collusion of this nature is fairly common in the real world, 
especially in such  elds as pharmaceuticals. 

When you strip a 
situation down to 
its essentials, it’s 
surprising how 
often you’ll be 
looking at a game.
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Aliprantis and Chakrabarti, Games and Decision Making.

Gibbons, Game Theory for Applied Economists.

McCain, Game Theory.

1. Recall the pastry/breakfast sandwich example from Lecture 5. 
These goods are partial substitutes, and their demand equations are 
q1 = 40  8p1 + 2p2 and q2 = 40  8p2 + 2p1, where the subscript 1 refers 
to pastries and the subscript 2 refers to breakfast sandwiches. Assume 
that the variable cost is $1/pastry and $2/breakfast sandwich. Using 
techniques parallel to those in the Cournot duopoly model, show that 
the equilibrium for this market is approximately $3.49 for pastries and 
$3.94 for breakfast sandwiches. 

2. Consider a business in which units take time to produce and storage can 
be expensive. Would you expect such a business to compete by setting 
quantity or by setting price?

    Suggested Reading

    Questions to Consider
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Voting—Determining the Will of the People
Lecture 20

There can be problems with voting.  … Voter fraud, hanging chads, the 
Electoral College—all problematic, but in some ways, this is just the tip 
of the iceberg.

We begin by comparing plurality voting, in which the candidate with 
the most votes wins, with alternative systems. A good alternative 
is desirable because plurality voting is vulnerable to the “spoiler 

effect” when an election involves more than two candidates. We will use an 
example to consider different voting systems. In our example, a hospital is 
planned to be built in one of four towns: Easton, Northview, Westlake, or 
Southville. The citizens will vote on where the hospital should be built; all 
citizens would like the hospital to be as close as possible to them. According 
to plurality voting, Southville wins a sincere vote because it has the largest 
population. But this result means that more than two-thirds of the voters got 
their last choice.

The “Condorcet method” uses a series of head-to-head matches to determine 
a winner. A Condorcet winner has to beat every alternative in a one-on-one 
vote. Westlake wins a head-to-head vote against any other town; thus, it is the 
Condorcet winner. Unfortunately,  nding a Condorcet winner isn’t always 
possible. In some situations, the group of voters may prefer A to B, B to C, 
and C to A. Studies suggest that this phenomenon, called the “Condorcet 
paradox,” doesn’t happen too often in real life, but it’s more likely to occur if 
players vote strategically.

Instead of focusing on  rst-place votes, the “Borda count” asks voters to rank 
their choices from best to worst. The least favorite candidate gets 0 points, 
the next preferred gets 1 point, and so on. In our hospital vote example, 
Easton edges out Westlake in the Borda count, 375 to 365. Eliminating 
Northview, which would lose anyway, causes voter preference to shift from 
Easton to Westlake.



71

According to “Arrow’s impossibility theorem,” no voting system can satisfy 
four reasonable-sounding requirements. Kenneth Arrow came up with  ve 
conditions that a good voting system would satisfy. (These conditions can 
be boiled down to four.) He then proved that no voting system except a 
dictatorship (in which only one person is allowed to vote) could satisfy the 
 rst three conditions. First, Arrow’s system couldn’t result in intransitive 

preferences, as we saw in the Condorcet method. If the system prefers 
A to B and B to C, it must prefer A to C. Second, the system had to be 
independent from irrelevant alternatives. If voters prefer A to B, they can’t 
prefer B to A when C enters the contest. Finally, if every voter prefers A 
to B, the system must rank A higher than 
B. The Arrow impossibility theorem was 
disturbing because it seemed to say that 
the idea of a democracy was fundamentally 
 awed. Some critics believe that Arrow’s 

condition of independence from irrelevant 
alternatives is too strict.

A popular alternative to plurality voting 
called “instant runoff voting” (IRV) can 
also yield some bizarre results. In IRV, 
candidates need to reach a certain quota—often a majority—to win. The 
process simulates a series of runoff elections, with one candidate eliminated 
each round. In the hospital example, Easton is eliminated  rst and gives 
its votes to Northview. Next, Westlake loses and also votes for Northview. 
Northview wins the IRV election. IRV voters don’t have to worry about 
“wasting” votes—they will indirectly vote for their second-choice candidates. 
It’s possible to lose an IRV election because public opinion moved closer to 
your position. It’s also dif  cult for moderate candidates to win.

A number of simulations by Ka-Ping Yee illustrate outcomes of the various 
voting systems. With IRV and plurality voting, moderate candidates have a 
more dif  cult time winning; a Borda count makes a win easier for moderate 
candidates. Additionally, with many candidates, IRV yields confusing and 
troubling results.

Given [recent election] 
turnout … perhaps it’s 
worth pointing out the 
obvious: that no voting 
system works if we 
don’t vote. 



72

Le
ct

ur
e 

20
: V

ot
in

g—
D

et
er

m
in

in
g 

th
e 

W
ill

 o
f t

he
 P

eo
pl

e

In a one-dimensional election between two candidates, the game has only 
one Nash equilibrium: both candidates in the exact center. This equilibrium 
may partly explain why candidates move closer to the center before a general 
election. If a candidate adopts a position anywhere else, the other player can 
play just a tiny bit closer to the center and win a majority of the vote.

Arrow’s impossibility theorem applies only to ranked systems, but some 
unranked systems of voting show real promise. One method is “approval 
voting,” in which each voter can vote for or against each candidate, and 
the candidate with the most votes wins. The United Nations uses approval 
voting to elect the secretary-general. In “range voting,” the voter gives each 
candidate a score from 0 to 10. The candidate with the highest average score 
wins. Range voting gives voters more  exibility than simple approval voting. 
It also seems to be much harder to disrupt with strategic voting than other 
systems, such as the Borda count. 

Amy, Behind the Ballot Box.

Poundstone, Gaming the Vote. 

1. Suppose that three different versions of a bill appear before a committee 
of 12 people. Four people prefer version A to version B to version C, 
4 prefer version B to version C to version A, and 4 prefer version C to 
version A to version B. Because there is no majority, the chair of the 
committee will  rst hold a vote between two of the alternatives, then the 
winner of this vote will face the remaining version. Show that if people 
vote their preferences, the chair effectively chooses which version will 
be the winner.

2. Do you think that instant runoff voting would increase or decrease the 
viability of a third party when compared to plurality voting?

    Suggested Reading

    Questions to Consider
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Auctions and the Winner’s Curse
Lecture 21

Assume that a single object is being auctioned. How much is that object 
worth? If the answer to that question were the same for everyone and 
were known to everyone exactly, then there wouldn’t be an auction.

Auctions play a more signi  cant role in our lives than many of us 
realize. The revenue from auctioning radio frequency spectrum 
licenses equals almost 1% of the federal budget. Online search 

engines, such as Google, use auctions to determine what ads and links we 
see when we search. The explosion of online auction sites, particularly 
eBay, has resulted in millions of transactions for billions of dollars worth of 
merchandise annually. 

Auctions have a number of forms but are generally used only when some 
uncertainty exists about the value of an object. In a private-value auction, the 
item being auctioned is worth a different amount to each bidder. Each bidder 
knows only his or her own valuation of the item. In a common-value auction, 
in contrast, the item may have the same value to all bidders, but each bidder 
has only an estimate of what the item is worth. 

Open-outcry auctions allow anyone to bid at any time, and all bids are 
observable by all players. Such auctions are what we usually imagine when 
we think of auctions in general. These auctions can involve either ascending 
or descending prices and are called “English” and “Dutch” auctions, 
respectively. In a descending-price auction, the bid continues to decrease 
until a player volunteers to pay the bid in exchange for the item.

Sealed-bid auctions allow each player to submit only one bid. The highest 
bid wins. Many sealed-bid auctions are “second price,” or “Vickrey,” 
auctions—the winner pays the second-highest bid. If the winner pays his or 
her own bid, the auction is “  rst price.” English auctions are strategically 
equivalent to second-price auctions, and Dutch auctions are equivalent to 
 rst-price auctions.
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In common-value auctions, overbidding is a constant concern. For example,  
suppose a common-value auction of a car has only one bidder. The seller 
sets a reserve price at his valuation of the car, which only he knows. You, 
the bidder, value the car at half again the reserve price. You have only an 
estimate of the car’s value. This one-bidder auction mirrors the market for 
lemons. If you bid p and the dealer sells you the car, your expected value is 
p(1.5)(0.5) = 3/4p.

What happens if we generalize the auction to multiple bidders and assume 
the car is worth $5,000? Five bidders estimate the car’s value at $4,500, 
$4,800, $5,000, $5,200, and $5,500. Even in an English or second-price 
auction, the car sells for a bit over $5,200, which means that the winner loses 
more than $200.

Because the highest estimates are usually too high, this “winner’s curse” 
frequently occurs in common-value auctions. To avoid the winner’s curse, 
players should “shade” their bids, bidding less than they think the item is 
worth. The important question is: How much am I willing to pay if I think 
this item is worth $5,000 and no one else is willing to bid above me? 
Calculations of how much to shade one’s bid can be quite sophisticated.

In private-value auctions, because each player knows his or her own 
valuation of the object, the winner’s curse doesn’t pose a problem. However, 
players still shade their bids in order to ensure a positive payoff. Consider 
a  rst-price auction between two bidders in which the private value of the 
object to each bidder is equally likely to be any amount from $0 to $100. 
The only Nash equilibrium is for each player to bid exactly half of his 
or her valuation.

In a second-price auction, bidding your valuation weakly dominates any 
other strategy. Imagine that the item is worth exactly $100 to you. Bidding 
more produces a different outcome only if someone else bids more than 
$100. In this case, you’re better off losing instead of paying more than the 
item is worth. Bidding less doesn’t allow you to win the item for any less, 
and someone else may win the auction for less than $100.
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The “revenue equivalence theorem,” a celebrated result of auction theory, 
addresses the question of which type of auction is best for buyers and 
sellers. According to this theorem, as long as the valuations of the bidders 
are independent from one another,  rst-price, second-price, open-outcry, and 
sealed-bid auctions each give the same expected 
revenue for the seller and the same expected 
payoff for the buyers. The revenue equivalence 
theorem relies on bidders being risk neutral. 
Research shows that real-time Dutch auctions 
yield lower revenues, and Internet Dutch 
auctions yield higher revenues.

Real-life auctions occasionally defy theoretical 
predictions, often in interesting ways. The 
April 1997 spectrum auctions in the United 
States brought in less than 1% of expected 
revenues. Game theorists noticed reappearing 
number sequences at the end of bids. Bidders 
were signaling to one another using the last few digits of their bids. Some 
companies used such signals to dissuade competitors from bidding up their 
frequencies and to threaten retaliation in later rounds of bidding.

New Zealanders were furious with their government after a Vickrey spectrum 
auction apparently failed to bring in as much revenue as expected. The public 
wanted to know why a bidder who was willing to bid $72,000 for a license 
got it for $4 and why a bidder who had offered more than $5 million ended 
up paying only $3,600. In English auctions, no one ever sees what the winner 
would have paid. When citizens saw these numbers, they assumed that the 
auction had failed.

In spite of their shortcomings, auctions offer a number of important bene  ts. 
First, they provide a credible signal indicating which entity can best use a 
resource. Also, because players can watch other bidders’ behavior, auctions 
serve to give companies an idea of whether their valuations for resources 
are reasonable. Google makes most of its revenue by selling sponsored links 
through second-price auctions. 

Buying on eBay, 
selling on Google, 
or determining 
who is going to be 
providing you with 
cell phone service 
next year—auctions 
are everywhere. 
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Harford, The Undercover Economist. 

Thaler, The Winner’s Curse. 

1. Consider an all-pay auction for $100. Each bidder makes a sealed bid 
for the $100. The highest bid wins, but all bidders must pay their bids. 
You can bid any amount up to $100. How much would you bid? Your 
answer almost certainly depends on the number of bidders, n. Imagine a 
scenario in which there are only 2 bidders and one in which there are 10. 
According to calculus and probability theory, with 2 bidders, you should 
randomly choose any number between $0 and $100, with each number 
being equally likely. Your average bid would, therefore, be $50. With n
bidders, your average bid is $100/n, and your particular bid is generated 
by picking a number in the 0 to 1 range (with each number being equally 
likely), raising it to the n  1 power, and multiplying the result by $100. 
For 10 bidders, half of the time, your bid will be 20 cents or less! 

2. Why is the winner’s curse not a problem for private-value auctions?

    Suggested Reading

    Questions to Consider
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Bargaining and Cooperative Games 
Lecture 22

In a cooperative game, each subset of players can work together to 
create or capture a certain amount of value—a payoff. … The payoff 
that these groups can capture isn’t any bigger than what the big group 
could do to begin with. In general, the sum is at least as big as its parts. 
This raises the possibility that players working as a “grand coalition,” 
with everybody included, can capture the maximum value. The question 
then becomes: How much of that value does each player receive?

In cooperative games, binding agreements and coalitions among players 
are possible. Most of the time, players can acquire more payoff by 
cooperating than by working independently. A coalition that includes all 

players is called a “grand coalition.”

As we demonstrate in an airport-building example, cooperative games 
present the problem of how to distribute that extra payoff. One well-known 
solution involves the “Shapley value.” Three companies each want a private 
airport for their company planes. Shortline’s plane requires only a short 
runway, Medway’s needs a medium runway, and Longfellow’s plane needs 
a long runway. An airport with only a short runway costs $90,000 to build. A 
medium runway costs $150,000 and a long runway costs $240,000.

Clearly, the three companies should share an airport, but how much should 
each company pay? Having each company pay $80,000, for example, 
doesn’t work. Shortline and Medway would be better off building their own 
airport with a medium runway for $150,000. If no player can do better by 
leaving the grand coalition under a certain allocation, that solution is part of 
the “core” of the game.

Sometimes, the core includes an in  nite number of possible divisions, as 
in the airport game. Sometimes, there isn’t any core at all. Suppose three 
people are deciding how to split $3,000 by majority vote. This game has no 
core—no matter how you divide the money, there exists another division that 
is better for two of the players.
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One allocation solution takes into account the Shapley value, which is 
the average value-added resulting from the addition of a given player to a 
coalition. When we calculate Shapley values, we  nd that Shortline should 
pay $30,000 for the airport, Medway should pay $60,000, and Longfellow 
should pay the remaining $150,000. Put another way, the companies split 
the cost of a small airport three ways, then Medway and Longfellow split 
the extra cost of a medium runway, then Longfellow pays the rest. In the 
division of the $3,000, the Shapley value suggests $1,000 per player—a 
sensible division for a symmetric game.

The Shapley value is computationally intensive, but it has a number of 
desirable properties. First, it’s ef  cient: The total of the Shapley values of 
all the players always equals the total size of the pie. Second, if two players 
contribute the same amount to the coalition, they have identical Shapley 
values. Finally, a player contributing nothing to the coalition has a Shapley 
value of 0, and each player gets as much or more from the Shapley value as 
he or she would have gotten if acting independently of a coalition.

Shapley values are particularly relevant in legislative bodies, where the idea 
is usually called the “power index.” When a balance of power exists between 
large voting blocs, minor blocs may gain substantial voting power.

John Nash outlined the “Nash cooperative bargaining solution” for games 
with two players. Nash bargaining solutions use “best alternatives to 
negotiated agreements”—BATNAs—in order to gauge a fair division. Your 
BATNA is what you walk away with if the negotiation fails. 

Nash outlined the conditions a sensible allocation should satisfy. First, a 
good allocation should be ef  cient—it should give the entire surplus to the 
players. Additionally, the correct division has to be independent of units. 
We should get the same answer whether we use dollars, cents, or pounds. 
And just as Arrow did with voting, Nash, too, required independence from 
irrelevant alternatives.

Under the Nash cooperative bargaining solution, the players should all get 
their BATNAs and the surplus should be divided evenly among the players. 
Nash’s solution coincides with the Shapley value, assuming equal bargaining 
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power. If bargaining powers are not equal, the surplus is divided in the same 
ratio as the bargaining powers.

We can model bargaining with a noncooperative sequential game of perfect 
information. Although a bargaining game could go on forever, delaying the 
 nal agreement carries a cost to both players. Suppose you manufacture 

plastic jugs. You need a supply of plastic beads to run your factory, and your 
usual supplier isn’t available. I represent another supplier of plastic beads. 
You call me the  rst day with an offer for three days’ worth of beads. I either 
accept and send you the beads or call tomorrow with a counteroffer on two 
days’ worth of beads and so on. Each day without beads causes you to lose 
$11,000 in revenue, but a day’s worth of beads costs 
me only $1,000. In this example, the best solution is 
for you to offer me $13,000 for three days’ worth of 
beads in the  rst round of negotiations and for me to 
accept your offer immediately.

For any “shrinking-pie” bargaining game, you can 
calculate each player’s surplus by imagining the 
game played with refusals at every step until no 
surplus remains. Add up all surplus destroyed by 
one player’s refusals in this hypothetical game. In 
our problem, each day’s worth of beads has a $10,000 surplus. If I refuse 
your  rst offer on day one, I destroy one day’s worth of surplus, $10,000. 
If you refuse my counteroffer on day two, you destroy $10,000 worth of 
surplus, and if I refuse your  nal offer, I destroy another $10,000. I destroyed 
$20,000 in surplus through this haggling, and you destroyed $10,000. Thus, 
in the actual  rst-round deal, you should be awarded $20,000 of surplus, and 
I should receive $10,000.

Another type of diminishing returns comes from impatience. Let’s look 
at this problem by determining optimal offers in the division of $100. 
Mathematically, we quantify impatience by saying that $1 now is as good 
as $(1 + r) in the next round. For purposes of this lecture, we’ll assume $1 
now is worth $(1 + r) to me in the next round and $(1 + s) to you in the next 
round. For you to accept my proposal that I keep $A out of $100, I need 
to make sure that the value of my offer to you now is at least as great as 

The practical 
upshot of this 
analysis is … 
impatience in 
bargaining has 
serious costs. 
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what you’ll get from your next-round offer. The symmetric condition holds 
for you. Solving these two equations simultaneously for A and B gives the 
optimal offers. If r and s are relatively small, going  rst doesn’t make much 
of a difference. Discrepancies in r and s can have a signi  cant impact on 
the game. In real-world situations, such as real estate deals and international 
negotiations, impatience has serious costs. 

Dixit and Skeath, Games of Strategy.

Muthoo, Bargaining Theory with Applications. 

1. Compare and contrast our analysis of bargaining in this lecture with our 
analysis of repeated games in Lecture 15.

2. The baseball players’ strike in 1980 took place in two parts: spring 
training and late in the season. Analyze this choice by the players in 
terms of BATNAs. You should know that players are paid uniformly 
throughout the season when not on strike but not paid in spring training. 
Also, game attendance is highest late in the season.

    Suggested Reading

    Questions to Consider
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Game Theory and Business—Co-opetition 
Lecture 23

The applications of a single model are often spread over a wide range 
of disciplines, but in my remaining lectures, I’m going to reverse this 
approach. I’m going to look at one area of application—business—
and see how the concepts of game theory can be applied to address 
its problems. 

In their book Co-opetition, Adam Brandenburger and Barry Nalebuff 
outline an integrated, step-by-step approach for applying game theory 
to business. They take particular care to point out that businesses have to 

cooperate to create the pie before competing for the pieces. Brandenburger 
and Nalebuff adopt the PARTS approach to games. The acronym stands 
for Players, Added Value, Rules, Tactics, and Scope. Players include all 
the other businesses in your game and fall into one or more categories: 
customers, suppliers, competitors, and complementors. Just as it did for 
the Shapley value, added value measures the increase in the size of the pie 
when you enter the coalition. For Brandenburger and Nalebuff, tactics means 
“perceptions” and includes our previous work with credibility, signaling, and 
screening. Scope is a reminder that multiple games may be part of larger 
game. In particular, if any player thinks two games are linked, then in a sense, 
they are.

Brandenburger and Nalebuff introduce a useful way to visualize a business 
game: the Value Net. To paraphrase their book Co-opetition, a player is 
your competitor if customers value your product less when they have the 
other player’s. A player is your complementor if customers value your 
product more when they have the other player’s product. Competitors and 
complementors don’t have to be in the same industry. Videoconferencing 
software competes with commercial airlines; red wine complements dry 
cleaning. Competitors and complementors also occur on the supply side. In 
an information economy with low variable costs, supply-side complementors 
should become increasingly common.
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Brandenburger and Nalebuff also emphasize the folly of pigeonholing other 
 rms into one of the four categories and discourage businesses from focusing 

too much on any one part of the Value Net. Video rental outlets are both 
competitors and complementors for movie studios. This is because, although 
movie rentals diminish the incentive for viewers to go to the theater, they 

bring in extra revenue in rentals, especially 
for lesser-known titles. Today, video sales and 
rentals generate more money than theatrical 
releases. Businesses can  nd complementary 
opportunities with other players, even 
competitors. Early automakers banded 
together to produce the  rst stretches of a 
transcontinental highway, a complementary 
good for all their products.

Added value, the amount you can add to 
the coalition, largely determines how much 
of the pie you get to keep. We can explore 
some common misconceptions about added 
value in the context of two card games. In 

the  rst card game, Brandenburger gives each of his 26 students a red card 
from the deck and keeps the 26 black cards for himself. He announces that 
a third party will pay $100 for each red/black pair. Most people assume that 
Brandenburger has all the bargaining power, but each of the students has 
$100 added value from his or her red card. Brandenburger has $2,600 in 
added value: exactly half of the whole.

Nalebuff plays the same game but removes three of the black cards, leaving 
himself with only 23. Although Nalebuff seems to have short-changed 
himself, each student’s value added is now zero. Nalebuff can always 
negotiate with three other students. By the time he has one card left, he can 
essentially choose among four bidders.

Nintendo, after only eight years in business, used a strategy similar to 
Nalebuff’s to attain a market value higher than that of Nissan or Sony. The 
company installed a security chip in its systems to ensure complete control 
over software development. The  rm also strictly limited the number of 

Brandenburger and 
Nalebuff list seven 
ways to get paid to 
play besides cash. … 
It’s doubtful that all of 
these are appropriate 
for your business, 
but some of them are 
likely to be. 
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games it would approve from any one source. By limiting the value added by 
suppliers and complementors, Nintendo was free to use Nalebuff’s approach 
to keep the lion’s share of the pro  ts. With a limited supply, none of the 
customers could hold out for a better deal.

The mere fact that you enter a game can change the strategies and payoffs 
for other players. Competition itself can add value to the marketplace. For 
example, Holland Sweetener decided to battle Monsanto’s NutraSweet 
product for entry into the aspartame market. Holland and Monsanto fought 
a  erce battle in the European market. Then, just as the patent for aspartame 
was about to expire, Coke and Pepsi both announced new long-term 
contracts with Monsanto. Though neither Coke nor Pepsi wanted to change 
suppliers, they saved hundreds of millions of dollars in their contracts with 
Monsanto thanks to Holland Sweetener’s competition. Brandenburger and 
Nalebuff suggest that companies be “paid to play” in circumstances where 
their competition bene  ts other players. 

Brandenburger and Nalebuff, Co-opetition.

Dixit and Nalebuff, Thinking Strategically.

Scheff, Game Over.

1. Students in the red/black card game had to make individual deals. How 
would the situation change if they could bargain collectively?

2. Create the Value Net for your own business. Think with special care 
about complementors; they are opportunities that are often overlooked.

    Suggested Reading

Questions to Consider
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All the World’s a Game
Lecture 24

“Rules.” Every game has them, and every business deal does, too. 
Brandenburger and Nalebuff point out that the rules of business 
are often viewed as being set in stone. To some extent, that’s true. 
… But a number of apparently minor rule changes, generally in the 
“details” of contracts, can have a powerful impact on shaping your 
business relationships. 

Co-opetition, the practical application of game theory to real-life 
business decision making, is built on the PARTS model of business 
opportunities: Players, Added Value, Rules, Tactics, and Scope. This 

lecture focuses on the last three of these components. 

The third component of Brandenburger and Nalebuff’s PARTS formula is 
Rules. As we’ve seen with other applications of game theory, apparently 
minor rule changes can affect your payoff in surprising ways. 

Although “most-favored customer” (MFC) provisions guarantee a customer 
a good price, they also offer hidden bene  ts to the seller. An MFC clause 
means that you agree to charge the customer the best price for your product 
that you give anyone. Having MFC clauses with many customers allows a 
supplier to make a credible threat: “I’d rather lose your business than drop 
my prices for everyone.”

MFC clauses can also make customers less aggressive in negotiation. As a 
customer, I gain the same bene  t of lower prices if someone else does the 
 ghting; thus, I have less incentive to do it myself. In this way, MFC clauses 

create a volunteer’s dilemma for customers and can actually allow a supplier 
to keep a greater amount of the surplus.

A “meet-the-competition” (MCC) clause gives a supplier valuable 
information at virtually no cost. According to this clause, if a customer  nds 
a lower price, you get a chance to meet it and keep the customer’s business 
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before he or she switches away from you. Even if you choose to lose the 
business, you still know exactly what the other offer was. Bidding for a 
competitor’s business has numerous hidden costs, including time and effort. 
MCCs add yet another hidden cost: If you meet the competitor’s price for 
your customer, the effort of making the bid is lost.

“Low-price guarantees”—if you buy something from me and  nd a better 
price elsewhere, I’ll refund the difference—actually allow suppliers to charge 
higher prices. There’s a cost associated with shopping around for a product 
you’ve already bought, and most people aren’t willing to pay it.

For Brandenburger and Nalebuff, the category of Tactics relates to shaping 
perceptions. We already discussed one important way to shape perceptions 
in our study of credibility and strategic moves. Brandenburger and Nalebuff 
also use the metaphor of the “fog of business” to describe pieces of 
information that other players suspect but don’t know for certain. Depending 
on the situation, you may want to either lift the fog or preserve it. Lifting 
the fog corresponds to our work with signaling and screening in previous 
lectures. Preserving the fog is a kind of signal jamming.

The last component of PARTS, Scope, reminds us that most games are linked 
to other games. When SEGA entered the video-game market with the 16-bit 
Genesis machine, Nintendo refrained from releasing its own 16-bit system 
to maximize the return on its effective monopoly in the 8-bit market. When 
Nintendo  nally produced a 16-bit system, the  erce competition removed 
much of the added value from the 8-bit market.

Many of the games we’ve studied are meaningful because they provide 
parables for more complicated situations and teach us practical lessons. For 
example, in order to play a game successfully, you need to be allocentric—
you have to see the world from other players’ perspectives. It’s important 
to see what the other players want, not what you would want in their place. 
It’s equally important to understand what game other players think they’re 
playing, as well as how they see you. Unless you have a dominant strategy, 
then without an allocentric perspective, you lose the ability to encourage the 
kind of behavior you want in others. Keep in mind that players can behave 
rationally even if they aren’t conforming to your payoff structure.
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The assumption of rationality in game theory sometimes goes too far. 
Bounded rationality studies seem to suggest that people tend to reason two 
or three steps before stopping, especially in new situations.

Threats, promises, and commitments are powerful tools, but only if you 
can make them credible. Strategic moves will force you to do something 
you don’t want to do. One way to make such moves credible is to sacri  ce 
your  exibility so that you’ll have to follow through. It’s never in your best 
interest to let someone threaten you.

Cooperation is perhaps the most interesting issue in this course. It’s certainly 
one of the most mystifying. Given the antagonism between the United States 
and the U.S.S.R. in the late 1940s and early 1950s, game theory legend 
John von Neumann advocated engaging the Soviets in nuclear war as soon 
as possible. He believed that such a war was inevitable and that the United 
States should act before the U.S.S.R. gained 
strength. Fortunately, the nuclear war between 
the United States and the U.S.S.R. never game 
to pass. It will be the work of a new generation 
of game theorists—perhaps behavioral game 
theorists—to  nd good models to explain how 
we avert such disasters.

Robert Axelrod’s work with the prisoner’s 
dilemma provided four clues for eliciting 
cooperation from others. First, you must be 
nice—don’t be the  rst to betray another. 
Second, you must be capable of being provoked—be ready to punish those 
who betray you and, perhaps, even those who betray others. Third, you must 
be forgiving—once you have punished a betrayal, be ready to work with 
other players again. And fourth, you must be straightforward—let others 
know how the actions they take will in  uence your actions. 

If we play the game 
right, the world of 
game theory can 
make this world—
the one that we all 
share—a lot nicer 
place to live. 
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Brandenburger and Nalebuff, Co-opetition.

Dixit and Nalebuff, Thinking Strategically.

1. Another rule in a contract, generally one with a commodity supplier, is 
the take-or-pay provision. It’s usually used with commodity suppliers 
that have high  xed costs. As an example, you agree to buy 100 units 
from a supplier at $80 per unit. If you buy less, you still have to pay 
$60 for each unit not bought. How does this provision, which essentially 
turns $60 of variable costs into a  xed cost for you, discourage your 
competition from stealing your business?

2. Play some of the games you’ve seen in this course, such as the ultimatum 
and dictator games, with various people under various conditions. See 
how the results compare to what game theory predicts, what you expect, 
and the experimental results discussed in Lecture 16.

    Suggested Reading

    Questions to Consider
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Timeline

0 500 .............................................. The Babylonian Talmud suggests ways 
of dividing properties for marriages 
and bankruptcies. One confusing 
prescription was shown by 
R. J. Aumann and M. Maschler (1985) 
to correspond to the cooperative game 
theory concept of the nucleous.

1838................................................. Augustin Cournot publishes Researches 
into the Mathematical Principles of the 
Theory of Wealth, applying the Nash 
equilibrium to a speci  c case 
of duopoly.

1913................................................. Ernst Zermelo publishes the  rst 
“theorem” of game theory, stating that 
in chess, white can force a win, black 
can force a win, or both sides can force 
at least a draw. 

1928................................................. John von Neumann proves the minimax 
theorem: If mixed strategies are 
permitted, every two-person zero-sum 
game has a unique individually rational 
payoff vector. The game may have more 
than one equilibrium solution, but they 
all give the same payoff vector; John 
von Neumann introduces the extensive 
(tree) form for games.

1944................................................. John von Neumann and Oskar 
Morgenstern publish the Theory of 
Games and Economic Behavior. The 
work introduces cooperative games and 
coalitions, in addition to elaborating 
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on two-person zero-sum games. The 
axiomatic utility theory introduced in 
this book is widely adopted 
in economics.

1950................................................. John McDonald publishes the  rst 
general introduction to game theory, 
Strategy in Poker, Business, and War; 
Melvin Dresher and Merrill Flood 
develop the prisoner’s dilemma at the 
RAND Corporation. A. W. Tucker 
popularizes the “prisoner” version of 
the game. 

1950 1953 ...................................... In a series of four papers, John Nash 
introduces the Nash equilibrium, proves 
its existence for noncooperative games, 
and proposes new methods for studying 
cooperative games. He also contributes 
to bargaining theory (including the 
Nash cooperative equilibrium) during 
this time. 

1952................................................. The  rst experimental game theory 
conference is held in Santa Monica, 
California, sponsored by the Ford 
Foundation and the University of 
Michigan; the  rst textbook on game 
theory, Introduction to the Theory of 
Games by John Charles McKinsey, 
is published. 

1952 1953 ...................................... Lloyd Shapely develops the Core as 
a solution to coalition games. He also 
introduces the Shapely value, a solution 
concept that assigns to each member of 
a coalition game a payoff commensurate 
with that player’s contribution to the 
power of the coalitions of which he or 
she is a part. 
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1953................................................. In Extensive Games and the Problem of 
Information, H. W. Kuhn develops the 
representation of extensive-form games 
and information sets still in use today. 

1954................................................. Shapely and Martin Shubik begin to 
explore game-theoretic implications in 
political science by examining voting 
power in a committee system. In this 
context, the Shapely value is the power 
index of an individual.

1955................................................. R. B. Braithwaite presents one of the 
 rst applications of game theory 

to the  eld of philosophy in his 
Theory of Games as a Tool for the 
Moral Philosopher.

1959................................................. Aumann introduces the concept of 
strong equilibria in coalitional games. A 
strong equilibrium is a strategy pro  le 
in which any coalition deviating from 
the speci  ed pro  le is strictly worse off; 
Shubik discovers the relation between 
Shapley’s core and the contract curve 
in economics. He also is the  rst to 
take a purely noncooperative view 
of oligopoly games; Much work is 
done in iterated games. Many “folk 
theorems” are developed. For example, 
let p = (p1, p2, … pn) be any convex 
combination of payoff vectors possible 
in the stage game, and let (e1, e2, … 
en) be the payoffs from some Nash 
equilibrium of the stage game. Then, as 
long as pi  ei for each i, there exists a 
subgame-perfect Nash equilibrium of 
the in  nitely iterated game in which the 
expected payoff to each player is given 
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by p, provided the discount rate ( ) is 
suf  ciently close to 1. 

1959 1960 ...................................... Cooperative game theory becomes 
more coherent as NTU (nontransferable 
utility) games begin to be explored. 

1960................................................. Thomas Schelling publishes The 
Strategy of Con  ict. Among many 
important ideas, he proposes a focal 
point (now called the Schelling 
point) as a method of choosing 
among equilibria.

1961................................................. R. C. Lewontin applies game-theoretic 
equilibria to evolutionary biology for 
the  rst time; Aumann extends the idea 
of the Core to nontransferable 
utility games.

1964................................................. Aumann and Maschler introduce 
bargaining sets, a more lenient variation 
of the Core that is always non-empty. 

1965................................................. Reinhard Selten introduces subgame-
perfect equilibria for iterated and 
extensive games; kernels of cooperative 
games (subsets of bargaining sets) 
are developed. 

1966................................................. Aumann and Maschler apply game 
theory to the Cold War in their paper 
“Game-Theoretic Aspects of Gradual 
Disarmament” and invent in  nite 
games of incomplete information in 
the process.

1966 1968 ...................................... John Harsanyi gives the modern 
de  nition of cooperative and 
noncooperative games and constructs 
the theory for games of incomplete 
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information. A game is cooperative if 
and only if agreements, threats, and 
contracts are completely enforceable. 

1968................................................. William Lucas develops a game with no 
stable set solution. 

1972................................................. The International Journal of 
Game Theory is founded by Oskar 
Morgenstern; evolutionarily stable 
strategies (ESSs) are developed by John 
Maynard Smith and soon begin to  nd 
applications in biology and economics. 

1974................................................. Aumann and Shapely examine large 
games in which individual players do 
not matter, also known as non-atomic 
games. Such games are important 
in economics. 

1974 1975 ...................................... Correlated equilibria and trembling-
hand perfect equilibria are introduced. 

1976................................................. Aumann formalizes the idea of common 
knowledge in game theory. 

1981................................................. Forward induction begins to  nd use 
as a tool for solving games; Aumann 
introduces the idea of players in 
repeated games as automata, opening a 
lively new  eld of research.

1982................................................. David Kreps and Robert Wilson 
generalize subgame-perfect 
equilibria into sequential equilibria 
for games that begin at a node with 
imperfect information.

1984................................................. The concept of rationalizability is 
introduced by B. D. Bernheim and 
D. G. Pearce; Robert Axelrod publishes 
The Evolutionof Cooperation.
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1985 1986 ...................................... Aumann’s idea of players as 
automata is used by A. Neyman and 
A. Rubinstein to develop the idea of 
bounded rationality.

1986................................................. Elon Kohlberg and Jean-François 
Mertens introduce re  nements to the 
notion of Nash equilibrium for 
normal form games. Until this point, 
such re  nements focused on the 
extensive form.

1988................................................. In A General Theory of Equilibrium 
Selection in Games, Harsanyi and 
Selten develop a set of criteria to choose 
among multiple possible equilibria for 
both cooperative and noncooperative 
games; game theorists begin to formally 
discuss the underlying assumptions of 
Nash equilibria and rationalizability. 

1991................................................. D. Fudenberg and J. Tirole present 
an early discussion of perfect 
Bayesian equilibrium.

1994................................................. Game theorists John Nash, John 
Harsanyi, and Reinhard Selten win the 
Nobel Prize in Economics for “their 
pioneering analysis of equilibria in the 
theory of non-cooperative games.”

2005................................................. Aumann and Schelling win the Nobel 
Prize in Economics for “having 
enhanced our understanding of 
con  ict and cooperation through game-
theory analysis.”

2007................................................. Roger Myerson, Eric Maskin, and 
Leonid Hurwitz win the Nobel Prize 
in Economics for “having laid the 
foundations of mechanism design 
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theory.” Mechanism design seeks to 
add a mechanism to a game so that 
the outcome of the game is socially 
desirable, even though each player acts 
only in his or her own self-interest.

2008................................................. Development of game theory 
continues. Much work is being done in 
evolutionary game theory, mechanism 
design, rationalizability, repeated 
games, and cooperative game theory.
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Glossary

added value: (The value of the game with you in it)  (the value of the 
game without you). The greater your added value, the more of that value you 
can claim.

approval voting: A voting system in which voters may vote for all candidates 
they  nd acceptable.

auction, Dutch: A multiple-round, highest-price auction. Prices start high on 
a “price clock,” then descend until one of the bidders “stops the clock” and 
pays that price.

auction, English: A multiple-round, highest-price auction. The most familiar 
kind of auction.

auction, Vickrey: Another name for a sealed-bid, second-price auction.

BATNA: Best alternative to a negotiated agreement. A player’s “disagreement 
value” in a bargaining game. If no deal is struck, a player still receives his or 
her BATNA.

battle of the sexes: Any 2  2 nonzero-sum game with the ordinal payoff 
matrix shown below. The game has two equilibria in pure strategies, both of 
which are Pareto-optimal.

Left Right
Left 3, 4 < 3, < 3
Right < 3, < 3 4, 3
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best response: Simply, a pure strategy that gives a maximum payoff given 
the strategy choices of the other players. A strategy pro  le in pure strategies 
is a Nash equilibrium if and only if each player is playing a best response to 
the strategies chosen by the others. Identifying best responses is a good way 
to identify pure Nash equilibria in strategic-form games.

Borda count: A voting system in which a candidate gets the most points for 
being a voter’s  rst choice, fewer points for being the voter’s second choice, 
and so on. The candidate with the most total points wins.

bounded rationality: An idea developed by Selten and others, rooted in 
the notion that people have only  nite powers of computation, memory, and 
information processing. Individuals often do not “catch on” until near the 
end of an interaction.

brinkmanship: The strategic loss of control to pose a probabilistic threat in 
a game when certain threats are too costly to be credible.

chicken: Any 2  2 nonzero-sum game whose ordinal payoffs correspond 
to the payoff matrix below. The name comes from two cars approaching 
each other at high speed in a contest to see which driver will be the 
 rst to swerve.

Straight Swerve
Straight 1, 1 4, 2
Swerve 2, 4 3, 3

common knowledge: A piece of information X is common knowledge if 
all players know X, all players know that all players know X, all players 
know that all players know that all players know X, and so on. Most game 
theory assumes common knowledge of the game structure and the rationality 
of all players.

complementor: In business, another business is your complementor 
if customers value your product more when they also have the 
complementor’s product. 



97

Condorcet winner: A candidate who wins all head-to-head votes against all 
other candidates.

coordination game, pure: Any 2  2 nonzero-sum game with the ordinal 
payoff matrix shown below. The game has two equilibria in pure strategies, 
but (  rst,  rst) is preferred by both players.

First Second
First 4, 4 < 3, < 3
Second < 3, < 3 3, 3

credible threat, promise, or commitment: By de  nition, a threat, promise, 
or commitment claim that under certain circumstances, a player will 
make a choice that will not give that player his or her best payoff. Such a 
claim is not believable, or credible, in a rational player unless the player 
changes the game by either changing his own payoffs or restricting his own 
future choices.

discount rate ( ): A multiplicative factor used in iterated games. The 
assumption is that a payoff of  in the current-stage game is equivalent to a 
payoff of 1 in the next stage. The value of  is less than 1, and the larger it 
is, the more patient the players are. If r is the rate of return (such as interest 
rate), then  = 1/(1 + r).

domination: Strategy A (strongly) dominates strategy B if the payoff for A is 
better than that for B, regardless of the choices made by the other players. If 
strategy A is sometimes strictly better than strategy B and sometimes equally 
good, then A weakly dominates B. If A dominates B, then B is dominated 
by A. Dominated strategies are never used in a Nash equilibrium; weakly 
dominated strategies may be.

duopoly: A market involving only two suppliers.

equilibrium, dominance-solvable: An equilibrium that can be found by the 
iterated elimination of strictly dominated strategies.
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equilibrium, Nash: A strategy pro  le in which no player can get a better 
expected payoff by unilaterally changing his or her strategy. Nash equilibrium 
is the foundation of the solutions found in almost all noncooperative 
game theory.

equilibrium, payoff-dominant: An equilibrium that gives a higher payoff to 
every player than any other equilibrium.

equilibrium, pooling: In a signaling game, an equilibrium in which different 
player types all respond in the same way and, hence, cannot be distinguished 
from one another.

equilibrium, rollback: The equilibrium obtained by evaluating a game 
tree node by node from its end to its beginning. The equilibrium rollback is 
guaranteed to be a subgame-perfect Nash equilibrium.

equilibrium, semiseparating: In a signaling game, an equilibrium in which 
one choice made by a player will reveal his or her type, while another choice 
could be made by multiple types. 

equilibrium, separating: In a signaling game, an equilibrium in which 
different player types distinguish themselves by their choices. 

equilibrium, subgame-perfect: An equilibrium that, when restricted to a 
subgame of the original game, is an equilibrium of that subgame. Equilibria 
that include senseless choices on off-equilibrium path nodes are not generally 
subgame-perfect.

equilibrium, trembling-hand perfect: An equilibrium in which no player 
would change strategies if there were an in  nitesimal chance of another 
player accidentally “trembling” and deviating from his or her equilibrium 
strategy. For two-player games, this is equivalent to both players playing 
admissible strategies.
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expected value: A term synonymous with “mean” or “average.” Note 
that your expected payoff is not the payoff you get most often but, rather, 
the average payoff you would expect by playing your strategy in many, 
many trials. Expected value is needed when games or strategies involve 
random chance.

extensive form: The game tree representation of a game, most commonly 
used with sequential games.

game, constant-sum or zero-sum: A game in which the payoffs received 
by all players always total to a constant sum. It follows that for some player 
to do better, another player must do worse. Mathematically, no important 
difference results if the sum is an arbitrary constant or 0.

game, deterministic: A game that involves no chance events, in contrast to 
a stochastic game.

game,  nite: A game with a  nite number of players, each of whom gets 
only a  nite number of moves and has only a  nite number of options at each 
move. In  nitely repeated games are not  nite, nor are games allowing mixed 
strategies because the probabilities allow an in  nite number of choices of 
strategy. Finite games require only ordinal (order-of-preference) payoffs.

game, noncooperative: A game in which binding agreements between 
players are not possible. This does not mean that the players cannot act for 
their mutual advantage, merely that nothing constrains their choices. In 
cooperative games, binding agreements are possible.

game, repeated or iterated: A game consisting of a “stage game” that is 
played consecutively two or more times, with the choices made in one round 
of the stage game being known to all players before the next round is played. 
Also called a “supergame.”

game, sequential-move or dynamic: Players’ choices may be contingent 
upon earlier decisions made by the players. These games are most often 
represented by game trees.
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game, simultaneous move or static: A game in which players make 
decisions concurrently, without knowledge of the choice made by the other 
player. These games are most commonly represented in strategic form.

grim trigger: A strategy for two-player iterated games in which a player 
initially cooperates but replies to any defection by the other player with 
an unending series of defect responses. This is the least forgiving of all 
retaliation strategies.

IEDS: Iterated elimination of dominated strategies. A rational player should 
not play a dominated strategy. Removing a dominated strategy from the 
game may result in one or more remaining strategies now being dominated. 
IEDS continues this process as far as possible. One can use IEDS to 
eliminate weakly dominated strategies, too, but doing so may eliminate some 
Nash equilibria.

imperfect information: A player is unaware of the outcome of some earlier 
chance event or of some contemporaneous decision of another player. All 
simultaneous games are games of imperfect information.

incomplete information: Also called “asymmetric information.” Information 
is known to one player but not to the other. Such information often involves 
the payoffs or choices of a player. Games of incomplete information can be 
transformed into games of imperfect information.

independence of irrelevant alternatives: The concept that a best solution 
should not change when some inferior alternatives are removed from 
consideration. This idea plays a role in both Arrow’s impossibility theorem 
and the Nash bargaining solution. Some consider it to be too strong a 
requirement for voting or bargaining.

information set: A collection of nodes in a game tree controlled by a given 
player that are indistinguishable to that player when any of the nodes in 
the set is reached. In a game of perfect information, each node is its own 
information set. Nontrivial information sets generally arise when some 
information in the game is hidden from the active player.
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instant runoff voting (IRV): Also called the “Hare vote.” Voters rank all 
candidates in order of preference. If no one receives a majority of votes as 
number 1, the candidate receiving the fewest number-1 votes is eliminated, 
and voters who had chosen this candidate as their favorite now vote for their 
second choice. This process continues until some candidate gets a majority.

minimax criterion: In a two-player zero-sum game, maximizing your payoff 
is equivalent to minimizing the payoff of your opponent. One can de  ne 
one’s optimal strategy as that which makes the maximum payoff available to 
one’s opponent as small as possible.

Nash bargaining solution: The solution concept that a surplus should be 
divided between two players so that their individual surpluses above their 
BATNAs are in the same proportion as their bargaining power.

Pareto-optimal or ef  cient: A strategy pro  le is Pareto-optimal (or ef  cient) 
if any other solution that gives one player a higher payoff necessarily gives a 
different player a lower payoff.

PARTS: Players, added value, rules, tactics, and scope.” The analysis 
framework used by Brandenburger and Nalebuff in Co-opetition.

payoff: The “return” received by a player when a game is complete; higher 
payoffs are generally assumed to be better. 

payoffs, cardinal: A system of payoffs on an interval scale, so that a payoff 
of 4 is preferred to a payoff of 1 to the same extent that a payoff of 7 is 
preferred to a payoff of 4. Cardinal payoffs are needed for games allowing 
mixed strategies or chance nodes.

payoffs, ordinal: A system of payoffs requiring only that if option A is 
preferred to option B, then A has a higher payoff then B. The magnitude of 
the payoffs is irrelevant, only their ordering. Ordinal payoffs are suf  cient 
for  nite games.

plurality voting: Whichever candidate receives the most votes wins.
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present value: The value of a future stream of payoffs, expressed in current 
payoff units by discounting future payoffs.

prisoner’s dilemma: Any 2  2 nonzero-sum game with the ordinal payoff 
structure shown below. The dominant equilibrium is for both players to 
defect, but this strategy is not Pareto-optimal.

Cooperate Defect
Cooperate 3, 3 1, 4
Defect 4, 1 2, 2

rational: The notion that one’s choices are made so as to result in the best 
possible expected payoff given one’s knowledge of the situation at the time 
the choices were made. Most game theory assumes that players are rational, 
but this idea has been revisited by Selten and others.

rationalizable: A strategy is rationalizable if it survives the iterated 
elimination of strategies that are never (weak) best responses. In two-player 
games, this is equivalent to saying that the strategy survives the iterated 
elimination of strictly dominated strategies. Strategies can be rationalizable 
without being part of a Nash equilibrium.

Schelling point or focal point: An equilibrium that, for some reason, is 
the “natural” one for players to choose among the possible equilibria in the 
game, such as all drivers using the right side of the road. These equilibria are 
often culture-speci  c.

screening: Eliciting from another player a piece of information known to 
that player but not to you.

signaling: Credibly communicating to another player a piece of information 
known to you.

signal-jamming: Preventing another player from either signaling 
or screening.
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social dilemma: A game (often involving many players) in which the 
equilibrium is not Pareto-optimal.

Stag Hunt: Also called the Assurance Game. Any 2  2 nonzero-sum game 
with the ordinal payoff matrix shown below. Some de  nitions allow the 
payoffs labeled 2 and 3 to be equal. The Stag Hunt has two equilibria: (work, 
work) is payoff dominant and (coast, coast) is risk dominant.

Work Coast
Work 4, 4 1, 3
Coast 3, 1 2, 2

strategic form: The matrix representation of a game, also called the “normal 
form.” For a two-player game, the game is represented by a table. One player 
picks a row of the table, the other picks a column, and the payoffs are the 
contents of the cell found by cross-indexing these choices.

strategy, admissible: A strategy that is not weakly or strongly dominated by 
another strategy.

strategy, dominant: A strategy that outperforms every other strategy for a 
player, regardless of the choices made by the other players. A strategy is 
“weakly dominant” if it is at least as good as every other strategy for the 
player, regardless of the choices of the other players.

strategy, dominated: See domination.

strategy, mixed: A strategy in which the pure strategy used is randomly 
selected from the available strategies, with each pure strategy having its own 
probability of selection.

strategy pro  le: A collection of strategies, one for each player. 

strategy, pure: A speci  cation of the single choice that a player will make in 
each situation in which she may  nd herself. 
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subgame: A game contained within a larger game. To be a subgame, it must 
start at a single node and include all descendants of that node. Further, if the 
subgame includes any members of an information set, it must contain all of 
that set’s members.

tit for tat: A strategy for symmetric two-player iterated games in which you 
treat the other player as he or she treated you in the previous round. Most 
commonly discussed in relation to the iterated prisoner’s dilemma. One 
generally begins by cooperating.

utility: A measure of the satisfaction obtained from an outcome. Properly, 
payoffs in games requiring cardinal payoffs should be utility measures to 
compensate for risk love and risk aversion. For any amount x and probability 
p, a player will be indifferent between (1) receiving a payoff of xp utils with 
certainty and (2) receiving either x utils (with probability p) or 0 utils (with 
probability 1  p).

Value Net: Brandenburger and Nalebuff’s graphical representation of 
business relations, including customers, suppliers, competitors, and 
complementors.

winner’s curse: The tendency for the winner of an auction to have overpaid 
for the common-value item purchased.
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Biographical Notes

Kenneth Arrow (1921  ): Kenneth Arrow is an American economist and 
game theorist. He earned his doctorate from Columbia University in 1951 
after interrupting his college career to join the Air Force during World War 
II. Though he has made contributions to many areas of economics, especially 
those disciplines dealing with social justice in economies, his most famous 
result is Arrow’s impossibility theorem, in which he proved that it is 
impossible to design a voting system to satisfy a set of fairly straightforward 
criteria. Many of his students have gone on to become famous game theorists 
in their own right, including John Harsanyi and Richard Myerson. 

Robert Aumann (1930– ): Robert Aumann is an Israeli mathematician and 
economist whose important work in game theory includes his de  nition 
of correlated game theory in repeated games, as well as one of the  rst 
acknowledgments of common knowledge. Though born in Germany, he 
grew up in New York City, graduating from City College there in 1950. 
In his earlier research, he was among the  rst to focus on games without 
transferable utility and the  rst to explore bargaining sets. Aumann won the 
2005 Nobel Prize in Economics along with Thomas Schelling for “having 
enhanced our understanding of con  ict and cooperation through game-
theory analysis.” 

Adam Brandenburger: Adam Brandenburger has published several papers 
on the application of game theory to various situations in management. He 
was born and raised in London and attended Queens College at Cambridge 
before immigrating to the United States. Since then, he has taught as a 
professor at Harvard University and New York University. He is perhaps 
best known for his book Co-opetition (co-authored with Barry Nalebuff), 
which further explores the business implications of game theory. In addition 
to his teaching, Brandenburger has consulted with a number of large  rms to 
do practical work in his  eld, including Fidelity Investments, IBM, Merck & 
Co., McKinley & Co., and Xerox. 
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Marie-Jean-Antoine-Nicolas de Caritat, marquis de Condorcet (1743–
1794): Condorcet was a French Enlightenment thinker, political scientist, 
and mathematician who exposed some of the basic dif  culties of voting 
processes. He was an early proponent of human rights in France, especially 
those of women and blacks, and was a moderate supporter of the French 
Revolution. Condorcet’s work with voting included Condorcet’s paradox, 
his observation that majority preferences are often not transitive with more 
than two positions. This insight, in turn, led him to introduce a new criterion 
for elections, now called the Condorcet winner, who would win in a head-to-
head contest against any other candidate. Condorcet died in prison at the age 
of 51, after having run afoul of the more radical French revolutionaries.

Antoine-Augustin Cournot (1801–1877): Cournot was a French philosopher, 
mathematician, and economist, as well as one of the  rst to contribute to 
what would later become the theory of games. After his primary education, 
he worked as a clerk in his hometown for four years before beginning more 
serious studies at Besançon. In addition to his introduction of elasticity in 
economics, his duopoly model, in which neither  rm has any incentive 
to change its production, stands as one of the  rst applications of Nash 
equilibria—more than 100 years before Nash’s work. However, Cournot’s 
work was not well reviewed by most of his contemporaries, and in large part, 
his works passed into obscurity for the rest of the 19th century.

John Harsanyi (1920–2000): John Harsanyi was born in Budapest, Hungary, 
where he grew up attending the same school as his game-theoretical 
predecessor, John von Neumann. Despite his mathematical gifts, Harsanyi 
studied philosophy and sociology. His early work was interrupted twice,  rst 
by the Nazi occupation of Hungary during his graduate years, then by his 
narrow escape from Stalinist Hungary shortly after acquiring his degree. After 
 eeing to Australia, he began to study economics and statistics, eventually 

acquiring his second Ph.D. in the former. Harsanyi’s most important work 
in game theory focused on the transformation of games of incomplete 
information to more manageable games of imperfect information. He has 
also extended Shapely values for cooperative games and Nash bargaining 
solutions to new kinds of bargaining problems. He was awarded the 1994 
Nobel Prize in Economics along with John Nash and Reinhard Selten. 
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Barry Nalebuff (1958– ): Barry Nalebuff, co-author of Co-opetition along 
with Adam Brandenburger, is the Milton Steinbach Professor of Management 
at Yale University. He completed his undergraduate studies in economics 
and mathematics at MIT before completing his Ph.D. at Oxford University. 
His work encompasses a large number of topics in economics, including 
the effects of game-theoretic strategies and incentives to optimally run 
businesses—expertise he also employs as a consultant for such companies 
as American Express and Citibank. Along with his former student Seth 
Goldman, Nalebuff is also the cofounder of the Honest Tea Company, a 
startlingly successful tea  rm that trades on the organic nature of its product 
and its socially responsible business practices. In addition to Co-opetition, he 
has also written another book, Thinking Strategically (with Avinash Dixit). 

John Forbes Nash, Jr. (1928– ): John Nash is perhaps one of the best-
known game theorists in the world. His development of the Nash equilibrium 
(1948–1950) revolutionized the theory of noncooperative games by using 
best-response arguments to provide an extension of von Neumann and 
Morgenstern’s results to nonzerosum games that can involve some mutual 
gain or loss for the players. His Nash bargaining solution likewise formed 
the basis of much of modern bargaining theory. Nash’s contributions to 
mathematics, especially results that facilitated future advances in game 
theory, have been no less impressive. Despite his battle with paranoid 
schizophrenia which left him incapacitated and unemployed for much of the 
1960s and 1970s, Nash recovered and was awarded the 1994 Nobel Prize in 
Economics along with John Harsanyi and Reinhard Selten. 

Thomas Schelling (1921– ): Thomas Schelling is an American game theorist 
best known for his introduction of the Schelling point (or focal point) and 
his models of self-sustaining segregation. After graduating from Berkeley 
in 1944 and receiving his Ph.D. in economics from Harvard in 1951, he 
served with the Marshall Plan in Europe. He was among the  rst to open the 
question of choosing among various equilibria in a game and did pioneering 
work in developing bargaining theory. Strategic moves—reducing one’s 
payoffs or options in order to increase one’s equilibrium payoff—is an idea 
largely credited to Schelling. In the past few decades, he has also become 
involved in the global-warming debate, framing it as a bargaining problem 



108

B
io

gr
ap

hi
ca

l N
ot

es

to lower emissions. In 2005, he was awarded the Nobel Prize in Economics 
along with Robert Aumann. 

Reinhard Selten (1930– ): Reinhard Selten is a German game theorist, 
notable for his invention of the subgame-perfect equilibrium and his 
explorations into bounded rationality. Growing up half-Jewish in 1940s 
Germany understandably made him attuned to politics during his early 
years, and this, in conjunction with a love for mathematics, contributed 
to his fascination with game theory. He published his paper on subgame-
perfect equilibria, one of the fundamental concepts of extensive games, in 
1962. Thirteen years later, he re  ned the idea by introducing trembling-
hand perfection, as well. In cooperation with John Harsanyi, Selten worked 
to create bargaining models under imperfect information, in addition to 
some work on nuclear deterrence during the Cold War. He shared the 
1994 Nobel Prize in Economics with Harsanyi and Nash for his work in 
noncooperative games. 

William Vickrey (1914–1996): William Vickrey was born in Victoria, 
British Columbia, but was educated at Yale and Columbia University. 
A conscientious objector during World War II, he spent some of his time 
devising a new inheritance tax system for Puerto Rico. After the war, he 
toured Japan with a team of economists, recommending reforms of that 
country’s tax system. Vickrey is well known for his proposals on congestion 
pricing. In such a system, a fee is levied on transportation, with the fee being 
higher at times of higher congestion. He is also famous for his analysis of the 
second-price, sealed-bid auction, which is still called the Vickrey auction in 
his honor. Vickrey received the Nobel Prize in Economics in 1996 and died 
three days after his selection was announced.

John Louis von Neumann (1903–1957): Born in Budapest, Hungary, John 
von Neumann was arguably the founding father of modern game theory. As 
a child, he showed prodigious talents in mathematics, eventually receiving 
his Ph.D. in 1928. He proved many fundamental results of game theory, 
including a general minimax solution to 2  2 zero-sum games in 1928 and 
the use of backward induction in 1937. His work culminated in 1944 with his 
Theory of Games and Economic Behavior with Oskar Morgenstern, which 
extended the minimax result of zero-sum games to situations with imperfect 
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information and with more than two players. Apart from his exceptional 
in  uence on game theory, von Neumann also made important contributions 
to logic, set theory, economics, quantum mechanics, and computer science. 
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